Сетевая модель osi
Содержание:
- Масштабируемость Ethernet
- Эталонная модель OSI
- Описание уровней сетевой модели
- Модель OSI
- Канальный уровень
- Characteristics of the OSI Model
- Обнаружение и исправление ошибок
- Транспортный уровень
- Presentation Layer
- Disadvantages of the OSI Model
- 4 уровень – транспортный (L4)
- 3 уровень – сетевой (L3)
- Набор протоколов в OSI:
- 1. Протоколы физического уровня модели OSI:
- 2. Протоколы канального уровня модели OSI:
- 3. Протоколы сетевого уровня модели OSI:
- 4. Протоколы транспортного уровня модели OSI:
- 5. Протоколы сеансового уровня модели OSI:
- 6. Протоколы представления уровня модели OSI:
- 7. Протоколы прикладного уровня модели OSI:
- Major functions of the Transport Layer
- Обзор
- Characteristics of OSI Model
Масштабируемость Ethernet
Оказывается, Ethernet и другие технологии канального уровня не подходят для создания крупной сети, которая может охватить весь мир из-за того, что у них есть существенные ограничения по масштабируемости.
Давайте рассмотрим существующие ограничения. Коммутаторы изернет для передачи кадра пользуются таблицами коммутации. И эта таблица должна содержать все MAК-адреса компьютеров в сети. Если для локальной сети это можно сделать, то для глобальной сети, в которой несколько миллиардов устройств, никакому коммутатору не хватит памяти, чтобы хранить подобную таблицу. И искать нужный порт в такой огромной таблице будут очень долго.
Следующая проблема в том, что если коммутатор не понимает куда отправлять кадр, он передает его на все порты, надеясь, что где-то там находиться получатель. Такой подход тоже работает в локальных сетях, но в глобальных сетях не работает. Если в интернет мы не знаем куда отправить пакет и будем пересылать всем компьютерам в интернете, то через некоторое время, мы засорим сеть такими мусорными пакетами и это приведет к отказу в обслуживании.
Другая проблема это отсутствие дублирующих путей между коммутаторами. В Ethernet у нас всегда должно быть одно соединение, чтобы не образовалось кольца, иначе сеть будет перегружена широковещательным штормом. В Ethernet есть технология STP, которая позволяет создавать несколько связей между коммутаторами, но в каждый момент времени активно всего одно соединение.
Рассмотрим пример, в нашей сети есть несколько коммутаторов. Они соединены между собой и есть такое соединение, которое приводит к образованию кольца.
В сети запускается протокол STP, коммутаторы выбирают корневой. Рассчитывают расстояние до корневого и отключают одно из соединений.
Если коммутаторы используются для построения локальной сети, где расстояние между коммутаторами небольшое, то такой подход работает отлично. Но, предположим, что мы строим глобальную сеть и если мы хотим отправить данные из Екб в Челябинск, который является соседним городом и расположен близко, то на уровне Ethernet мы это сделать не сможем, потому что прямое соединение отключено протоколом STP.
Необходимо передавать данные через другие города, расстояние гораздо больше, поэтому скорость передачи будет существенно ниже. От этого хотелось бы избавиться.
Масштабируемость на сетевом уровне
Что делает сетевой уровень, чтобы обеспечить масштабирование и построить такую сеть, которая способна объединить все компьютеры во всем мире, например сеть интернет.
- Первое это агрегация адресов. Сетевой уровень работает не с отдельными адресами, а с группами адресов, которые объединяются и такие блоки адресов называются сетью.
- Пакеты, для которых путь доставки неизвестен на сетевом уровне отбрасываются. Это обеспечивает защиту составной сети от циркуляции мусорных пакетов.
- И возможность наличия нескольких активных путей в сети. Это является одной из причин создания сетей с пакетной коммутацией. В нашей сети всегда есть некое количество активных путей между отправителем и получателем. И данные могут пройти по любому из этих путей. В том числе, если один путь выйдет из строя, то другой путь останется доступным. Но если у нас есть несколько путей, то на сетевом уровне появляется задача маршрутизации. То есть, на каждом этапе мы должны определять, по какому пути мы отправим ту или иную порцию данных.
Эталонная модель OSI
Начальная стадия развития сетей LAN, MAN и WAN имела во многих отношениях хаотический характер. В начале 80-х годов XX века резко увеличились размеры сетей и их количество. По мере того как компании осознавали, что, используя сетевые технологии, они могут сэкономить значительные средства и повысить эффективность своей работы, они создавали новые сети и расширяли уже существовавшие с той же быстротой, с какой появлялись новые сетевые технологии и новое оборудование.
Однако к середине 80-х годов эти же компании стали испытывать трудности с расширением уже существующих сетей. Сетям, использовавшим различные спецификации и реализованным различными способами, стало все труднее осуществлять связь друг с другом. Компании, оказавшиеся в такой ситуации, первыми осознали, что необходимо отходить от использования фирменных (proprietary) сетевых систем.
Для решения проблемы несовместимости сетей и их неспособности осуществлять связь друг с другом международная организация по стандартизации (International Organization for Standardization — ISO) разработала различные сетевые схемы, такие, как DECnet, системная сетевая архитектура (Systems Network Architecture — SNA) и стек протоколов TCP/IP. Целью создания таких схем была разработка некоторого общего для всех пользователей набора правил работы сетей. В результате этих исследований организация ISO разработала сетевую модель, которая смогла помочь производителям оборудования создавать сети, совместимые друг с другом и успешно взаимодействовавшие. Процесс подразделения сложной задачи сетевой коммуникации на отдельные более мелкие можно сравнить с процессом сборки автомобиля.
Процесс проектирования, изготовления деталей и сборки автомобиля, если его рассматривать как единое целое, является весьма сложным. Маловероятно, что нашелся бы специалист, который смог бы решить все требуемые задачи при сборке автомобиля: собрать машину из случайным образом подобранных деталей или, скажем,
при изготовлении конечного продукта непосредственно из железной руды. По этой причине проектированием автомобиля занимаются инженеры»проектировщики, инженеры-литейщики проектируют формы для литья деталей, а сборочные инженеры и техники занимаются сборкой узлов и автомобиля из готовых деталей.
Эталонная модель OSI (OSI reference model), обнародованная в 1984 году, была описательной схемой, созданной организацией ISO. Эта эталонная модель предоставила производителям оборудования набор стандартов, которые обеспечили большую совместимость и более эффективное взаимодействие различных сетевых технологий и оборудования, производимого многочисленными компаниями во всем мире.
Эталонная модель OSI является первичной моделью, используемой в качестве
основы для сетевых коммуникаций.
Хотя существуют и другие модели, большинство производителей оборудования и программного обеспечения ориентируются на эталонную модель OSI, особенно когда желают обучить пользователей работе с их продуктами. Эталонная модель OSI в настоящее время считается наилучшим доступным средством обучения пользователей принципам работы сетей и механизмам отправки и получения данных по сети.
Эталонная модель OSI определяет сетевые функции, выполняемые каждым ее уровнем
Что еще более важно, она является базой для понимания того, как информация передается по сети. Кроме того, модель OSI описывает, каким образом информация или пакеты данных перемещается от программ»приложений (таких, как электронные таблицы или текстовые процессоры) по сетевой передающей среде (такой, как провода) к другим программам»приложениям, работающим на другом компьютере этой сети, даже если отправитель и получатель используют разные виды передающих сред
Описание уровней сетевой модели
Уровень приложений (7) (прикладной уровень) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.
На этом уровне работают такие протоколы как: HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.
Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.
На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.
Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.
На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.
Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня — это TCP и UDP. TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.
Сетевой уровень (3) – он предназначен для определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF.
Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.
Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы.
Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.
Модель OSI
Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:
- горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
- вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине
В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.
Рисунок — 1
Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.
Физический уровень
На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:
- тип разъемов и кабелей
- разводка контактов в разъемах
- схема кодирования сигналов 0 и 1
Самые распространенные виды спецификаций на этом уровне:
- EIA-RS-232-C, CCITT V.24/V.28 — параметры несбалансированного последовательного интерфейса
- EIA-RS-422/449, CCITT V.10 — параметры сбалансированного последовательного интерфейса
- IEEE 802.3 — Ethernet
- IEEE 802.5 — Token ring
На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.
Канальный уровень
На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:
- Протокол последовательной передачи HDLC
- IEEE 802.2 LLC и MAC
- Ethernet
- Token Ring
- FDDI
- х 25
- Frame Relay
Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.
Сетевой уровень
На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. Маршрутизаторы работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:
- ПIP
- IPX
- X 25
- CLNP
Рисунок — 2
Транспортный уровень
На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:
- TCP — протокол управления передачей
- NCP
- SPX
- TP4
Сеансовый уровень
На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.
Уровень представления
На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации (кодирование, сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.
Прикладной уровень
Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:
- FTP/TFTP — протокол передачи файлов
- X 400 — электронная почта
- Telnet
- smtp
- CMIP — управление информацией
- SNMP — управление сетью
- NFS — сетевая файловая система
- FTAM — метод доступа для переноса файлов
Канальный уровень
Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
IEEE (Institute of Electrical and Electronics Engineers — Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа — верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.
Characteristics of the OSI Model
Here are some important characteristics of the OSI model:
- A layer should only be created where the definite levels of abstraction are needed.
- The function of each layer should be selected as per the internationally standardized protocols.
- The number of layers should be large so that separate functions should not be put in the same layer. At the same time, it should be small enough so that architecture doesn’t become very complicated.
- In the OSI model, each layer relies on the next lower layer to perform primitive functions. Every level should able to provide services to the next higher layer.
- Changes made in one layer should not need changes in other lavers.
Обнаружение и исправление ошибок
Самый простой способ это обнаружить ошибку. Например, с помощью контрольной суммы или какого-либо другого алгоритма. Если у нас технология канального уровня использует обнаружение технических ошибок, то кадр в котором произошла ошибка, просто отбрасывается. Попыток восстановить данные не производится.
Более сложный механизм — это исправление ошибок. Чтобы иметь возможность исправить ошибку, нужно добавить к данным дополнительную информацию, с помощью которой мы сможем обнаружить ошибки и восстановить правильные данные. Для этого используются специальные коды исправляющие ошибки.
Другой вариант исправление ошибок при передаче данных — это повторная отправка тех кадров в которых произошла ошибка. Он используется совместно с обнаружением ошибок, когда отправитель передает данные получателю, получатель обнаруживает ошибку в данных, но вместо того чтобы исправить ошибку в передаваемых данных, отправитель передает эти данные еще раз.
Давайте рассмотрим, как реализуется повторная отправка сообщений. Предположим, что у нас есть отправитель и получатель и отправитель передал получателю некоторое сообщение. Получатель получил это сообщение проверил его на корректность убедился, что данные переданы правильно и после этого передает отправителю подтверждение о получении. Отправитель передает следующее сообщение предположим, что здесь произошла ошибка, получатель эту ошибку обнаружил или сообщение вообще не дошло до получателя, поэтому получатель не может передать подтверждение о получении этого сообщения.
Отправитель, после того как, отправил сообщение запустил таймер ожидания подтверждения. По истечению времени ожидания подтверждение не пришло, отправитель понял, что при передаче сообщения произошла проблема и нужно повторно передать то же самое сообщение.
В этот раз сообщение успешно дошло до получателя и он снова передает подтверждение. После этого отправитель может передавать следующий кадр.
Есть два варианта метода повторной отправки сообщения. Схему которую мы рассмотрели называется с остановкой и ожиданием. Отправитель передает фрейм и останавливается ожидая подтверждение. Следующий кадр передается только после того, как пришло подтверждение о получении предыдущего сообщения. Такой метод используются в технологии канального уровня Wi-Fi.
Другой вариант метода повторной отправки это скользящее окно. В этом случае отправитель передает ни одно сообщение, а сразу несколько сообщений и количество сообщений, которые можно передать не дожидаясь подтверждения называется размером окна. Здесь получатель передает подтверждение не для каждого отдельного сообщения, а для последнего полученного сообщения. Такой метод лучше работает на высокоскоростных каналах связи. Сейчас нет технологии канального уровня, которая использует этот метод, но он используется на транспортном уровне в протоколе TCP.
У нас есть несколько вариантов, что можно делать с ошибками. Можно их обнаруживать, исправлять с помощью кодов исправления ошибок, либо с помощью повторной доставки сообщений. Также мы можем исправлять и обнаруживать ошибки на канальном уровне, либо на вышестоящих уровнях.
Транспортный уровень
Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).
Presentation Layer
Presentation layer allows you to define the form in which the data is to exchange between the two communicating entities. It also helps you to handles data compression and data encryption.
This layer transforms data into the form which is accepted by the application. It also formats and encrypts data which should be sent across all the networks. This layer is also known as a syntax layer.
The function of Presentation Layers:
- Character code translation from ASCII to EBCDIC.
- Data compression: Allows to reduce the number of bits that needs to be transmitted on the network.
- Data encryption: Helps you to encrypt data for security purposes — for example, password encryption.
- It provides a user interface and support for services like email and file transfer.
Disadvantages of the OSI Model
Here are some cons/ drawbacks of using OSI Model:
- Fitting of protocols is a tedious task.
- You can only use it as a reference model.
- Doesn’t define any specific protocol.
- In the OSI network layer model, some services are duplicated in many layers such as the transport and data link layers
- Layers can’t work in parallel as each layer need to wait to obtain data from the previous layer.
Summary
- The OSI Model is a logical and conceptual model that defines network communication which is used by systems open to interconnection and communication with other systems
- In OSI model, layer should only be created where the definite levels of abstraction are needed.
- OSI layer helps you to understand communication over a network
- In 1984, the OSI architecture was formally adopted by ISO as an international standard
Layer | Name | Function | Protocols |
---|---|---|---|
Layer 7 | Application | To allow access to network resources. | SMTP, HTTP, FTP, POP3, SNMP |
Layer 6 | Presentation | To translate, encrypt and compress data. | MPEG, ASCH, SSL, TLS |
Layer 5 | Session | To establish, manage, and terminate the session | NetBIOS, SAP |
Layer 4 | Transport | The transport layer builds on the network layer to provide data transport from a process on a source machine to a process on a destination machine. | TCP, UDP |
Layer 3 | Network | To provide internetworking. To move packets from source to destination | IPV5, IPV6, ICMP, IPSEC, ARP, MPLS. |
Layer 2 | Data Link | To organize bits into frames. To provide hop-to-hop delivery | RAPA, PPP, Frame Relay, ATM, Fiber Cable, etc. |
Layer 1 | Physical | To transmit bits over a medium. To provide mechanical and electrical specifications | RS232, 100BaseTX, ISDN, 11. |
4 уровень – транспортный (L4)
Отправка данных от отправителя к получателю регулируется отдельно. За этот процесс отвечает транспортный уровень. При передаче информации всегда теряется часть данных. Но для некоторых видов файлов (аудио, видео, фотографии) малые потери не критичны. Для передачи таких данных применяется протокол UDP. Он обеспечивает отправку пакетов без установки соединения.
При использовании UDP файл делится на датаграммы. Она содержит заголовки, которые необходимы для доставки до получателя. По этой причине датаграммы могут направляться пользователю разными маршрутами и в произвольном порядке. Если датаграмма потеряется, в файле появляется битые данные.
Если же пользователь отправляет файлы, чувствительные к потерям данных, применяется TCP. Он проверяет целостность передаваемой информации. При его использовании файл сегментируется. Но это происходит не всегда, а только с теми пакетами данных, размер которых превышает пропускную способность сетей. Сегментация также требуется, когда происходит отправка файлов по нестабильным сетям.
В повседневной работе инженеры взаимодействуют только с первыми четырьмя уровнями. Знать их особенности нужно для проектирования сетей и настройки оборудования. С остальными уровнями взаимодействуют разработчики ПО.
3 уровень – сетевой (L3)
На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.
Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.
При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.
L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.
Набор протоколов в OSI:
Пора рассказать на мой взгляд самое интересное, это распределение протоколов по уровням модели OSI, тут будут описаны самые основные протоколы, так как, их очень много.
1. Протоколы физического уровня модели OSI:
- Ethernet — Протокол для работы кабеля Ethernet, или кабеля для интернета;
- GSM — Протокол для работы со сотовой связи;
- 802.11 — Протокол для работы Wi-Fi;
- USB — Протокол для работы шины в компьютере или флешки;
- IrDA — Протокол для работы с инфракрасным портом;
- Bluetooth — Протокол для работы с Bluetooth;
2. Протоколы канального уровня модели OSI:
- Ethernet — Протокол самого кабеля интернет;
- Frame Relay — Протокол для передачи сотовой связи;
- PPP — Протокол передачи данных один на один, между двумя компьютерами;
3. Протоколы сетевого уровня модели OSI:
- IPv4 — Протокол для работы IP адресов версии четыре;
- IPv6 — Протокол для работы IP адресов версии шесть;
- ICMP — Протокол для ошибок в сотовой связи;
- RiP — Протокол позволяет маршрутизаторам быстро и динамически находить путь;
4. Протоколы транспортного уровня модели OSI:
- TCP — Протокол который отправляет пакет проверяя, но медленно, используется для сайтов;
- UDP — Протокол который отправляет пакет не проверяя, но быстро, используется в онлайн играх;
5. Протоколы сеансового уровня модели OSI:
- PPTP — Протокол для туннельного соединена с компьютер на компьютер или VPN;
- L2TP — Подобный протокол PPTP
- SSH — Протокол позволяет производить удалённое управление операционной системой;
6. Протоколы представления уровня модели OSI:
- SSL — Криптографический протокол для безопасного соединения;
- XDR — Протокол позволяет организовать не зависящую от платформы передачу данных между компьютерами в гетерогенных сетях;
7. Протоколы прикладного уровня модели OSI:
- HTTP — Протокол для передачи гипертекста или HTML;
- FTP, TFTP, SFTP — Протоколы для передачи файлов;
- TELNET — Протокол для уделённого управления другим компьютером;
- DHCP — Протокол для автоматического получение IP адреса;
- IRC — Протокол для обмена сообщениями в режиме реального времени;
- SNMP — Протокол для управление устройствам в IP-ситах;
- DNS — Протокол позволяющий получать информацию о доменах;
- BitTorrent — Пиринговый (P2P) сетевой протокол для кооперативного обмена файлами через Интернет;
- SMTP, POP3, IMAP4— Протоколы для отправки, доставки электронной почты;
Major functions of the Transport Layer
- Segmentation and reassembly: When this layer receives a message from the upper layers, it divides the message into many abstract segments. Each segment has a sequence number so that each segment can be easily identified.
- Connection control: It provides two types of connection: – Connection-oriented and Connectionless. In a connectionless, it is done by the user diagram protocol (UDP). It sends the message directly to the destination without established the connection. UDP is faster than TCP because TCP does not establish the connection. In Connection-oriented, it is done by the transmission control protocol (TCP). In Connection-oriented, it establish the connection first, then send the message to the destination. UDP is slower than TCP because first UDP established the connection then sent the message.
- Flow control: The transport layer is responsible for flow control, similar to the data link layer. However, flow control in this layer is done end to end instead of a single link.
- Error control: The transport layer is responsible for error control, similar to the data link layer. However, error control in this layer is done end to end instead of a single link.
Обзор
Стек протокола OSI состоит из семи концептуальных уровней. Уровни образуют иерархию функциональных возможностей, начиная с физических аппаратных компонентов и заканчивая пользовательскими интерфейсами на уровне программных приложений. Каждый уровень получает информацию от уровня выше, обрабатывает ее и передает на следующий уровень. Каждый уровень добавляет информацию об инкапсуляции ( заголовок ) к входящей информации перед ее передачей на нижний уровень. Заголовки обычно включают в себя адрес источника и назначения, информацию об управлении ошибками, идентификацию протокола и параметры протокола, такие как параметры управления потоком и порядковые номера.
Слой | Блок данных протокола (PDU) | Функция | ||
---|---|---|---|---|
Слои хоста |
7 | Заявление | Данные | API высокого уровня , включая совместное использование ресурсов, удаленный доступ к файлам |
6 | Презентация | Трансляция данных между сетевой службой и приложением; включая кодировку символов , сжатие данных и шифрование / дешифрование | ||
5 | Сессия | Управление сеансами связи , т. Е. Непрерывный обмен информацией в форме множественных передач в прямом и обратном направлении между двумя узлами. | ||
4 | Транспорт | Сегмент , дейтаграмма | Надежная передача сегментов данных между точками в сети, включая сегментацию , подтверждение и мультиплексирование | |
Слои медиа |
3 | Сеть | Пакет | Структурирование и управление многоузловой сетью, включая адресацию , маршрутизацию и контроль трафика. |
2 | Канал передачи данных | Рамка | Надежная передача кадров данных между двумя узлами, соединенными физическим уровнем | |
1 | Физический | Бит , | Передача и прием необработанных битовых потоков по физическому носителю |
Characteristics of OSI Model
Here are some important characteristics of the OSI model:
- A layer should only be created where the definite levels of abstraction are needed.
- The function of each layer should be selected as per the internationally standardized protocols.
- The number of layers should be large so that separate functions should not be put in the same layer. At the same time, it should be small enough so that architecture doesn’t become very complicated.
- In the OSI model, each layer relies on the next lower layer to perform primitive functions. Every level should able to provide services to the next higher layer
- Changes made in one layer should not need changes in other lavers.