Сколько типов sfp трансиверов вы знаете?

Построение оптоволоконных сетей с трансиверами

Рассмотрим условия, в которых применяются transceiver. Выберем 2 сферы: для интернета, сети ПК и для системы безопасности с видеокамерами (аналоговыми, не IP).

Интернет и сеть ПК

Если говорить об оптоволоконном интернете, то для среднестатистического пользователя тут все понятно: провайдер, предоставляющий услуги, тянет оптоволокно со специальным разъемом к роутеру, коммутатору, на котором установлен трансивер. А оттуда уже интернет раздается по Wi-Fi или по витой паре или тому же оптоволокну. То есть механика процесса немного схожая как, если бы использовалась витая пара. Но внутренние нюансы значительные: клиент получает чрезвычайно качественный и быстрый сигнал.

Если строится именно локальная сеть (без выхода в интернет) с оптоволокном и такими приемопередатчиками, то таковое протягивается от каждого компьютера к общему маршрутизатору (свитчу). ПК должны иметь встроенные трансиверы, не обычные сетевые адаптеры для витой пары. Преимущество в том, что такую систему (ВОЛС) можно построить на больших расстояниях и скорость ее будет выше, чем на металлических проводах, на одну жилу можно «повесить» несколько каналов.

Видеонаблюдение

Принцип снятия сигнала с нескольких видеокамер максимально схож как для постройки сети с компьютерами, так как в данном случае эти приборы, если упростить, в составе системы такой же элемент как ПК.

Преимущества перед иными типами связи:

  • по одному волокну можно подключить чрезвычайно больше количество устройств. В нашем примере — 8. То есть не будет толстого жгута кабелей. Вместо фарша из кабелей (если камера аналоговая, то к ней идет два) будет одна стеклянная тонкая нитка в изоляции;
  • на стекловолокно не действуют удары молний, то есть, например, если обычный металлический кабель (по нему идет слаботочное питание на камеры) подвергнется этому явлению, то может сгореть видеорегистратор, иное оборудования, с ВОЛС такое полностью исключается.

Куплен комплект трансиверов-медиаконвертеров

Один блок на прием, второй на передачу, между собой будут соединяться оптоволокном. К каждому идет слаботочный блок питания на 5 В и 1 А:

Корпусы самих устройств идентичные, отличаются только буквами: на одном R — ресивер (передает), на втором — T (принимает)

На корпусе:

  • с одной стороны: гнезда питания (есть 2, зеленый дублирует обычный);
  • для оптокабеля (круглый с резьбой, закрытый красной крышечкой);
  • статусные индикаторы;
  • с другой — 8 DNC разъемов, на 8 камер (есть модели под разное количество).

Для соединения между собой блоков куплен оптический патч-корд. Надо проследить, чтобы штекеры подошли к трансиверу, так как есть несколько стандартов: SC, FC, LC и пр. На нашем тип указан на листке в упаковке. Длина — 10 м, так как делается пока тестовое соединение

Для соединения ОВ не применяют обычных способов — есть особые механические коннекторы или специальный сварщик, но он чрезвычайно дорогой, поэтому применим первые. Изоляцию с такого кабеля можно снять любыми кусачками, подручными инструментами, но потребуется еще и зачистка, а для нее нужен специальный стриппер (стоит около 5 тыс. руб., но на китайских площадках есть экземпляры и за 800 руб.). Главное, зачем он нужен — для снятия лака с внутренней жилы, диаметр которой 0.25 мм.

В доме есть маленькая серверная, где расположен видеорегистратор. Отсоединяем от него кабели камер и присоединяем трансивер — блок с буквой T, он будет отправлять картинку с камер на ресивер (с буквой R).

Это тестовая сборка, для наглядности в ограниченном пространстве, поэтому ответная коробочка (R) размещена в доме на столе:

Для соединения ресивера с видеорегистратором применяются короткие патч-корды с BNC штекерами. Результат ниже. У нас transceiver не поддерживает некоторые стандарты, поэтому картинка черно-белая. Есть модели, обеспечивающие цветное видео, но у продавца надо особо уточнить, какие стандарты работают (PAL, SECAM, NTEC, Plug&Play и прочее). В нашем случае из-за неправильно подобранных стандартов пользователю пришлось добиваться цветной картинки, изменяя положение перемычек на самих камерах, но само качество немного ухудшилось.

Типы SFP модулей

Первая версия устройства появилась в 2001 году, после этого вышло множество видов  и модификаций трансивера, но наиболее распространенной можно считать SFP MSA. Их производят в соответствии с соглашением MSA, то есть с учетом всех требований спецификации и с соблюдением установленных стандартов. Модули SFP подразделяют на типы в соответствии с технологией передачи информации и бывают они:

  • Одноволоконные (WDM, BiDi) SFP трансиверы, самые простые устройства, оснащенные только одним волокном которое используется для приема и передачи оптического сигнала. Пользуются широким спросом в городских сетях.
  • Двухволоконные SFP модули, в них для получения связи применяют два оптических волокна, одно из которых передает, а другое принимает сигнал. Модели данного типа пользуются большой популярностью среди потребителей.
  • CWDM SFP модули, они формируют сигнал в системах грубого спектрального уплотнения CWDM, внешне ничем не отличаются от двухволоконных приборов. За счет наличия специальных лазеров и мультиплексоров, создают многоканальные системы передачи информации в пределах одного или двух волокон. За счет того, что данный тип модулей позволяет создавать большую и устойчивую связь с минимальными вложениями, его можно наиболее востребованным.
  • Еще один тип модулей — DWDM SFP, они применяются в системе спектрального уплотнения DWDM.

От качества выбранного устройства и его совместимости с основным оборудованием будет зависеть бесперебойность работы сети.

Маркировка SFP-модулей

Производители помечают каждое устройство определенным цветом, как правило, окрашивается не весь корпус, а только пластиковая защелка. Но из-за часто меняющихся стандартов и требований цветовая гамма не у всех одинакова, некоторые компании выбирают цвета исключительно в рамках своего производства, что иногда вызывает путаницу. Помимо цвета, на корпусе прибора наносятся такие сведения:

  • SFP – форм-фактор;
  • 1SM – одномодовый SFP модуль;
  • 1550nm – параметр, говорящий о том какой длины у передатчика текущая волна;
  • 3SC – тип законцовки кабеля;
  • 1000Base-LX – поддерживаемый стандарт.

Для специалиста подобные сведения позволят подобрать подходящую модель модуля, поэтому перед покупкой всегда можно проконсультироваться с тем, кто разбирается в подобных тонкостях.

Особенности SFP поддержки различных типов оптики

Многие читатели знакомы с SFP трансиверами для двухволоконных патчкордов. Такие трансиверы имеют интерфейс с двумя разъёмами типа LC для подключения оптического кабеля к модулю.

Однако есть и другие модели трансиверов, например, SFP WDM, и разумеется, трансиверы с разъёмом RJ45, о которых шла речь выше.

Существует классификация SFP модулей по доступному расстоянию для передачи данных:

  • 550 м — для многомодовых;
  • 20, 40, 80, 120, 150 км для одномодовых модулей.

Выпускаются SFP модули нескольких стандартов с различными комбинациями приёмника (RX) и передатчика (TX).

Такой подход даёт возможность выбрать необходимую комбинацию для заданного соединения, исходя из используемого типа оптоволоконного кабеля: многомодовое (MM) или одномодовое (SM).

Помимо деления по типу оптоволокна, есть разделение по количеству используемых волокон. Есть SFP модули для парных оптических проводников: многомодовые и одномодовые.

Существуют и одноволоконные модули: WDM, а также CWDM и DWDM.

SFP модули для многомодовых патчкордов используют раздельные приёмник и передатчик фиксированной длины волны 850нм (собственно, для этого и нужно два оптических проводника в одном патчкорде).

В таких патчкордах используется крестообразное соединение от передатчика к приёмнику. (TX1\<—>RX2, RX1\<—>TX2).

Преимуществом многомодового оптоволокна является невосприимчивость к изгибам (до определённого разумного предела), что позволяет использовать, например, при монтаже стоечного оборудования, когда излишки длины патчкорда можно убрать в органайзер.

Как было уже указано выше, ограничением для многомодового оптоволокна является сравнительно небольшая длина (до 550м).

SFP модули для парных одномодовых соединений имеют раздельные приёмник и передатчик фиксированной длины волны либо 1310нм, либо 1550нм. Подключение делается по той же крестообразной схеме. Применение одномодовых SFP модулей делает возможным передачу данных на расстояния до 120км.

Однако не во всех случаях можно использовать парные оптоволоконные кабели. В некоторых случаях гораздо удобнее передавать сигнал в обе стороны по одному оптическому световоду.

SFP WDM — сокращение от Wavelength Division Multiplexing (спектральное уплотнение каналов). В данном случае модули (они же WDM Bi‑Directional, или Bi‑Di) используют совмещённый приёмопередатчик и работают в парах. Пара состоит из двух модулей с разной длиной волны: 1310нм и 1550нм.

В первом случае используется передатчик с длиной волны 1550нм и приёмник с длиной волны 1310нм.

Во втором случае: наоборот, передатчик с длиной волны 1310нм и приёмник с длиной волны 1550нм.

Расстояние между двумя этими каналами составляет 240нм, что достаточно для того, чтобы различать эти два сигнала без специальных средств детектирования, и позволяет объединить эти два сигнала в одном световоде.

Благодаря совмещению каналов для соединения таких модулей нужна только одна оптоволоконная жила. Стандартные SFP WDM модули имеют разъём типа SC для одножильного соединения.

SFP CWDM — Coarse WDM — что дословно значит «грубый» WDM — это более поздняя реализация WDM с раздельными приёмником и передатчиком. SFPCWDM отличаются, в первую очередь, диапазоном каналов передачи, который варьируется от 1270нм до 1610нм:

  • 2 дополнительных канала 1270нм и 1290нм;

  • 16 основных (1310нм — 1610нм с шагом 20нм).

Данные модули имеют широкополосный приёмник, что позволяет 2 модулям с любыми длинами волн передачи работать в паре. Но для работы в паре такие модули использовать нерационально, более оптимально использовать 16 каналов с разными длинами волн, подключёнными к мультиплексору. Мультиплексор «собирает» свет разных длин волн, который излучают передатчики модулей, «объединяет» собранное в единый световой пучок и направляет по единственному одномодовому волокну далее. При приёме данных производится обратная процедура.

Рассказывая о кабелях и стандартах, стоит также упомянуть 10 гигабитный Direct Attached Cable (DAC) SFP+, работающий по стандарту 10GBASE и совместимый со стандартами 10G Ethernet, 8/10G Fibre Channel. Такие кабели стоят относительно недорого и чаще всего применяются на небольших расстояниях, например, для подключения СХД, серверов и других устройств к скоростной сети.

Рисунок 5. DAC10G-3M кабель Direct Attach

Поддерживаемые коммутаторы Catalyst

В данном разделе перечислены коммутаторы Cisco Catalyst, поддерживающие модули трансиверов Cisco SFP.

Примечание: Если модуль / устройство поддерживает модули трансиверов 100M SFP и Gigabit Ethernet SFP, они могут использоваться одновременно в соответствующих портах. Однако, объединение (выделение каналов) различных типов модулей трансиверов не поддерживается.

Серия Catalyst 6500/6000:

Модули

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-X6148-FE-SFP

GLC-FE-100FX

GLC-FE-100LX

GLC-FE-100BX-D

GLC-FE-100BX-U

GLC-FE-100EX

GLC-FE-100ZX

WS-SUP720

WS-SUP32-8GE-3B

WS-SUP32-10GE-3B

WS-X6724-SFP

WS-X6748-SFP

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

Серия Catalyst 4500

Модули

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-X4248-FE-SFP

GLC-FE-100FX

GLC-FE-100LX

GLC-FE-100BX-D

GLC-FE-100BX-U

WS-X4013+TS

WS-X4506-GB-T

WS-X4516-10GE

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

WS-X4013+10GE

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

WS-4448-GB-SFP

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Серия Catalyst 3750

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C3750-24PS

WS-C3750-24TS

WS-C3750-48PS

WS-C3750-48TS

WS-C3750G-12S

WS-C3750G-24PS

WS-C3750G-24TS

WS-C3750G-48PS

WS-C3750G-48TS

GLC-GE-100FX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

WS-C3750-24FS-S

WS-C3750G-24TS-E1U

WS-C3750G-24TS-S1U

GLC-GE-100FX

Серия Catalyst 3750-E

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C3750E-24TD

WS-C3750E-24PD

WS-C3750E-48TD

WS-C3750E-48PD

WS-C3750E-48PD-F

GLC-GE-100FX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

Серия Catalyst 3560

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C3560-8PC

GLC-FE-100FX

GLC-FE-100LX

GLC-FE-100BX-D

GLC-FE-100BX-U

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

WS-C3560-24PS

WS-C3560-48PS

WS-C3560-24TS

WS-C3560-48TS

WS-C3560G-24PS

WS-C3560G-24TS

WS-C3560G-48PS

WS-C3560G-48TS

GLC-GE-100FX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

Серия Catalyst 3560-E

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C3560E-24TD

WS-C3560E-24PD

WS-C3560E-48TD

WS-C3560E-48PD

WS-C3560E-48PD-F

GLC-GE-100FX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

Серия Catalyst 2970

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C2970G-24TS

GLC-GE-100FX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

Все CWDM SFP

Серия Catalyst 2960

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C2960-24TC-L

WS-C2960-48TC-L

WS-C2960G-24TC-L

GLC-GE-100FX

GLC-FE-100FX

GLC-FE-100LX

GLC-FE-100BX-D

GLC-FE-100BX-U

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

GLC-BX-D

GLC-BX-U

Все CWDM SFP

Серия Catalyst 2950

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C2950ST-8 LRE

WS-C2950ST-24 LRE

WS-C2950ST-24 LRE997

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

Все CWDM SFP

Серия Catalyst 2948G:

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-C2948G-GE-TX

GLC-T

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

Все CWDM SFP

Серия Catalyst Express 500

Коммутаторы

100M SFP

Gigabit Ethernet SFP

CWDM SFP

WS-CE500-24LC

WS-CE500-24PC

WS-CE500G-12TC

GLC-GE-100FX

GLC-FE-100FX

GLC-FE-100LX

GLC-FE-100BX-D

GLC-FE-100BX-U

GLC-SX-MM

GLC-LH-SM

GLC-ZX-SM

Другие типы устройств, поддерживающие модули трансиверов Cisco SFP см. в следующих документах:

Где применяются примеры

Есть чрезвычайное множество схем сетей с оптоволокном и такими сетевыми адаптерами. Принцип простой: ОВ от провайдера заходит в коммутатор с указанным приемопередатчиком, а тот раздает интернет на компьютеры, подключаемые к нему. Ниже один из вариантов:

Основные сферы применения:

  • обеспечение высокоскоростного интернета через оптические волокна. В дата-центрах, у провайдеров, в серверных и пр.;
  • для связи любого вида (телекоммуникации и прочее);
  • построение сетей:
    • видеонаблюдения;
    • компьютерных (локальных или других).

Трансивер может работать с линиями полностью из ОВ или переводить сигнал с них на металлические магистрали и наоборот. Почти всегда он связан с этой разновидностью среды (оптоволоконной).

Настройте модули SFP.

Настройте скорость интерфейса и дуплексный режим

Интерфейсы Ethernet на коммутаторе работают на скоростях 10, 100 или 1000 Мбит/с, или 10000 Мбит/с в полнодуплексном или полудуплексном режиме. В полнодуплексном режиме, две станции могут отправлять и принимать данные одновременно. Обычно порты 10 Мбит/с работают в полудуплексном режиме, т. е. станции могут либо принимать, либо отправлять данные.

Невозможно настроить скорость портов модулей SFP, но можно настроить отмену согласования скорости (nonegotiate) при подключении к устройству, которое не поддерживает автоматическое согласование. Однако, когда модуль 1000BASE-T SFP находится в порту модуля SFP, можно настроить скорость 10, 100, 1000 Мбит/с или автоматически.

Невозможно настроить дуплексный режим портов модулей SFP, если только в порт не вставлен модуль 1000BASE-T SFP или 100BASE-FX MMF SFP. Все остальные модули SFP работают в полнодуплексном режиме.

  • Когда в порт SFP вставлен модуль 1000BASE-T SFP, можно настроить дуплексный режим auto или full.

  • Когда в порт SFP вставлен модуль 100BASE-FX SFP, можно настроить дуплексный режим half или full.

Примечание: Полудуплексный режим поддерживается интерфейсами Gigabit Ethernet. Однако невозможно настроить данные интерфейсы для работы в полудуплексном режиме.

Использование модулей SFP сторонних производителей

Использование трансиверов SFP сторонних производителей в устройствах Cisco не поддерживается Cisco. Одобренные компанией Cisco модули SFP имеют серийный EEPROM, который содержит серийный номер, имя и идентификатор поставщика, уникальный код безопасности и контрольную суммы CRC. Когда модуль SFP вставляется в коммутатор, программное обеспечение коммутатора считывает данные из EEPROM, чтобы проверить серийный номер, имя и идентификатор поставщика и пересчитать код безопасности и контрольную сумму CRC. Если неверен серийный номер, имя или идентификатор поставщика, код безопасности или контрольная сумма CRC, программное обеспечение создает данное сообщение об ошибке безопасности и переводит интерфейс в состояние «err-disable»:

Подключение модуля SFP к модулю GBIC

SFP и GBIC являются всего лишь подключением между реальным лазером и корпусом. Для подключения модуля SFP к модулю GBIC необходимо проверить следующее:

  • Тип используемого оптоволоконного кабеля: Одномодовый или мультимодовый.

  • Тип требуемого физического подключения: разъем SC, разъем ST и т.д..

Среда передачи

Среда передачи во многом влияет на форм-фактор, скорость, технологию связи. Есть два типа таковой:

  • оптоволоконная с одномодовыми и многомодовыми волокнами;
  • электрическая: витая пара, а также твинкоаксиальный провод (встречается очень редко);

По оптоволокну (ОВ) передают не электросигналы, а свет. Это кабель с очень тонким ядром (сердцевиной) толщиной немногим большей волоса из специального гибкого стекла, которое проводит свет. Жила покрыта лаковой оболочкой, сверху которой тканевая и пластиковая изоляция. То есть провод тут один, все остальное — защитные оболочки.

На схеме выше видно как идет свет внутри жилы: он полностью отражается от ее границ — это полное внутреннее отражение, обеспечивающее преодоление больших расстояний.

Минусы оптоволокна:

  • нельзя резко перегибать, бытует мнение, что оно ломается, это не совсем так, волокно гибкое и переломить его весьма сложно, не в этом дело. Перегибы возможные значительные и не нанесут вреда, но если они резкие, то просто сигнал по нему не пройдет (перегибаешь — сигнал пропадает, разгибаешь — появляется). Это надо учесть при прокладке линии;
  • дорогое само ОВ и оборудование для его обслуживания.

Преимущества:

  • не чувствительное к перепадам напряжения, наводкам;
  • несравнимо большая скорость (60 Тбит/с и выше) и емкость (пропускная способность), если сопоставить с иными средами, например, витой парой (всего лишь 10 Гбит/с). Один провод, толщиной в волос может обслуживать несколько каналов;
  • охватывает чрезвычайно большие расстояния без усилителей и пр;
  • малый вес;
  • срок службы 30–50 лет, витая пара — около 5 лет;
  • может работать в воде.

Оптика не передает электричество, что можно рассматривать и как плюс, и как минус. Также по ней сигнал либо есть, либо его нет, так как это цифровая передача.

Типы ОВ:

  • многомодовые. Большой диаметр ядра (50 и 62.5 мкм), для нескольких световых мод. Проводят сигналы до 2 км. Используются для локальных подсоединений, где промежуток до 300 м. Это трансиверы AOC (Active Optical Cable), технологии уплотнения SWDM (Short Wavelength Division Multiplexing);
  • одномодовые. Малый диаметр сердцевины (9 мкм), для только одной моды. Более популярные. Особенно для современных телекоммуникаций. Работает с расстояниями до 160 км, позволяет создавать высокопротяженные системы уплотнения DWDM.

Перейдем к следующему типу среды, к металлическим кабелям, проводящим электросигналы.

Виды:

  • витая пара. Наиболее знакомая даже обывателям. Это медный или обмедненный кабель для интернета обычно с 8 или 4 жилами со своей изоляцией (внутри главной внешней оболочки 4 или 2 перевитые вокруг друг друга пары). В 2016 году вышел тип кабеля 10GE Copper под трансиверы SFP+ 10GE Copper;
  • твинкоаксиальный (twin-axial). Это «коаксиалка» с 2 параллельными проводниками в общем экране. Встречается очень редко. Используется с transceiver типа Direct Attach Copper.

Модули трансиверов Cisco SFP

Ассортимент интерфейсов Cisco с возможностью горячей замены обеспечивает богатый выбор скоростей, протоколов, диапазонов охвата и поддерживаемых сред передачи.

Модули Cisco Fast Ethernet SFP

Cisco 100BASE-X SFP имеет шесть конфигураций:

Cisco 100M Ethernet SFP

Номер изделия

Описание

Cisco 100BASE-FX SFP

GLC-FE-100FX

Работает на обычном мультимодовом оптоволоконном (MMF) канале на расстояниях до 2 км.

Для портов Ethernet 100Мбит/с

GLC-GE-100FX

Работает на обычном мультимодовом оптоволоконном (MMF) канале на расстояниях до 2 км.

Для портов Gigabit Ethernet

Cisco 100BASE-LX10 SFP

GLC-FE-100LX

Работает на обычном одномодовом оптоволоконном (SMF) канале на расстояниях до 10 км.

Cisco 100BASE-BX10 SFP

GLC-FE-100BX-D

GLC-FE-100BX-U

Работает на одножильном канале SMF на расстояниях до 10 км.

Cisco 100BASE-EX SFP

GLC-FE-100EX

Работает на обычном одномодовом оптоволоконном (SMF) канале на расстояниях до 40 км.

Cisco 100BASE-ZX SFP

GLC-FE-100ZX

Работает на обычном одномодовом оптоволоконном (SMF) канале на расстояниях до 80 км.

Модули Cisco Gigabit Ethernet SFP

Модуль трансивера SFP

Модуль трансивера 1000BASE-T SFP

Cisco Gigabit Ethernet SFP

Номер изделия

Описание

Cisco 1000BASE-SX SFP

GLC-SX-MM1

SFP-GE-S2

Работает на 50 мкм мультимодовом оптоволоконном канале на расстояниях до 550 м, а на мультимодовом оптоволокне 62,5 мкм FDDI — до 220 м.

Cisco 1000BASE-LX/LH SFP

GLC-LH-SM1

SFP-GE-L1

Работает на стандартном одномодовом оптоволоконном канале на расстояниях до 10 км и до 550 м на любом мультимодовом оптоволокне.

Cisco 1000BASE-ZX SFP

GLC-ZX-SM1

SFP-GE-Z2

Работает на стандартном одномодовом оптоволоконном канале на расстояниях до примерно 70 км.

Cisco 1000BASE-BX10-D и 1000BASE-BX10-U SFP

GLC-BX-D2

GLC-BX-U2

Работает на одной жиле стандартного одномодового оптоволоконного кабеля. Устройство 1000BASE-BX10-D всегда подключается к устройству 1000BASE-BX10-U при помощи одной жилы стандартного оптоволоконного кабеля с рабочей дальностью передачи до 10 км.

Cisco 1000BASE-T SFP

GLC-T

SFP-GE-T3

Модуль трансивера 1000BASE-T SFP для медного провода категории 5.

1Без цифрового оптического мониторинга (DOM)

1С цифровым оптическим мониторингом (DOM)

3 NEBS 3 ESD

Дополнительные сведения о поддержке установки Gigabit Ethernet на оптоволоконных мультимодовых каналах см. в разделе Cisco Поддержка развертывания Gigabit Ethernet с мультимодовыми оптоволоконными каналами до 2 км.

Модули трансиверов Cisco CWDM

Cisco SFP неплотного спектрального мультиплексирования (Coarse Wavelength Division Multiplexing — CWDM) является устройством ввода-вывода с возможностью горячей замены, которое вставляется в порт или разъем SFP коммутатора или маршрутизатора Cisco и связывает порт с оптоволоконной сетью. Cisco CWDM SFP являются многоскоростными изделиями, поддерживающими стандарты Gigabit Ethernet и Fibre Channel (1 Гбит и 2 Гбит).

Модуль CWDM SFP

Сер. номер

Описание

1

Цветная стрелка на этикетке

2

Оптический канал приема

3

Оптический канал передачи

4

Цветной фиксатор Bale Clasp

5

Пылезащитная заглушка для оптического канала

CWDM SFP выпускаются для восьми длин волн от 1470 нм до 1610 нм. Цветовая маркировка устройств соответствует длине волны, сопоставленной каналу Gigabit Ethernet. В этой таблице перечислены SFP с длинами волн и цветовыми кодами.

Номер изделия

Описание

Цветовой код

CWDM-SFP-1470

Cisco CWDM 1470-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Серый

CWDM-SFP-1490

Cisco CWDM 1490-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Фиолетовый

CWDM-SFP-1510

Cisco CWDM 1510-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Синий

CWDM-SFP-1530

Cisco CWDM 1530-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Зеленый

CWDM-SFP-1550

Cisco CWDM 1550-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Желтый

CWDM-SFP-1570

Cisco CWDM 1570-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Оранжевый

CWDM-SFP-1590

Cisco CWDM 1590-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Красный

CWDM-SFP-1610

Cisco CWDM 1610-нм SFP; Gigabit Ethernet и 1 и 2 Гбит Fibre Channel

Коричневый

Мониторинг рабочих параметров SFP (DDM)

Для контроля рабочих параметров в модулях SFP, как и в трансиверах других форм-факторов, используется цифровая система контроля – DDM. Цифровой диагностический мониторинг сокращенно DDM, функция цифрового мониторинга рабочих параметров приемопередатчиков SFP, SFP + и XFP. Это позволяет отслеживать в реальном времени рабочие параметры приемопередатчика, такие как: приложенное напряжение, температура приемопередатчика, ток смещения лазера и оптическая мощность на выходе TX, полученная оптическая мощность RX.

Структура и работа этой системы описаны в спецификации SFF-8472. Более подробное описание DDM можно найти здесь.

Что такое SFP (SFP+) модули?

SFP ( SFP+) модуль представляет собой миниатюрный узел в металлическом корпусе, с одной стороны имеющий контакты для подсоединения к главному устройству (маршрутизатору, коммутатору), а с другой – разъемы для подсоединения оптического кабеля (реже – витой пары), которые до использования закрыты пластиковой заглушкой.

SFP и SFP+ модули были разработаны в качестве ответа на разнообразие видов оптических кабелей. Вместо того, чтобы создавать линейки коммутаторов, маршрутизаторов и т. д., оснащенных различными сочетаниями разъемов для оптических кабелей разных типов, производители добавляют в устройства порты, а вернее сказать – пустые слоты, «шахты» под SFP-модули. Администратору сети остается только подобрать правильный тип оптического трансивера и вставить его в слот, создав таким образом оптический (или медный) порт нужного стандарта.

Большинство видов SFP и SFP+ имеют практически одинаковый форм-фактор: идентичные размеры, похожую конструкцию, материал корпуса у обоих типов – металл.

Это позволяет сделать слоты для них универсальными. Большинство устоявшихся производителей сетевого оборудования на сегодняшний день в своих устройствах размещают порты формата SFP+, и предусматривают обратную совместимость, так что в эти слоты чаще всего можно вставлять модули формата SFP. При этом, конечно, SFP трансивер будет работать согласно своим параметрам, а не характеристикам SFP+. Но нужно уточнять, есть ли такая возможность, например, в устройствах MikroTik зачастую поддерживается только SFP+.

Обратная манипуляция – вставить модуль SFP+ в разъем для SFP – невозможна.

Наличие порта для SFP-модулей в концевых маршрутизаторах или коммутаторах позволяет:

  • подключить сегмент локальной сети, удаленный на расстояние более 100 м, максимальных для медного кабеля, оптическим кабелем без применения промежуточных усилителей;
  • подключиться к провайдеру оптического интернета без использования абонентского PON-модема;
  • при необходимости осуществлять «горячую» замену сбойных модулей – они все ее поддерживают;
  • при необходимости увеличивать пропускную способность канала или его дальность путем использования более «скоростного» кабеля и соответствующих модулей.

Размер разъема стандартного SFP-модуля по габаритам соответствует разъему RJ45, что позволяет в устройстве размером в один юнит (1U) разместить до 48 SFP-разъемов. Большинство производителей в профессиональных устройствах размещают один, два или четыре SFP-разъема, иногда совмещенных попарно с разъемами RJ45 (комбо-порты) для большей универсальности. В последнем случае, одновременная работа обоих портов не допускается, работает тот, который был задействован первым.

Оптические модули являются активным оптоволоконным оборудованием – они потребляют электроэнергию и выделяют тепло. Это нужно учитывать, если вы собираетесь использовать под SFP модули в коммутаторе/маршрутизаторе большое количество слотов.

Большинство современных модулей поддерживают функцию цифрового контроля качества связи – DDM, Digital Diagnostics Monitoring, или DOM, Digital Optics Monitoring, позволяющие диагностировать повреждения кабеля и сбои модулей. Определить, есть ли такая поддержка часто можно уже по маркировке трансивера – в ней присутствует буква d.

Заключение

SFP vs SFP+, SFP28 vs SFP+, and QSFP+ vs QSFP28, все их различия в различных типах модулей были четко изложены в этой статье. Хотя некоторые из них имеют одинаковую конструкцию, они предназначены для разных скоростей передачи данных. Из сравнения видно, что основной движущей силой развития оптических модулей является необходимость достижения более высоких скоростей полосы пропускания с меньшими форм-факторами. Например, QSFP28 предлагает большую пропускную способность, чем QSFP+ в том же форм-факторе. Для получения дополнительной информации об упаковке модулей. Если вы хотите узнать больше о упаковке модуля, вы можете обратиться к статье Оптический SFP: что это такое и как его выбрать?.

  • SFP

  • SFP+

  • QSFP+

  • SFP28

  • QSFP28

  • Руководство для покупателя

  • Обновление товаров

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector