Топологии локальных вычислительных сетей: типы и критерии выбора

Содержание:

Как устроена локальная сеть с выделенным сервером

Сеть с выделенным сервером отличается от одноранговой на уровне логической организации взаимодействия.

Простейшая одноранговая локальная вычислительная сеть состоит из равноправных узлов (компьютеров). Каждый из них:

  • определяет часть собственных ресурсов (файлы, папки, принтеры, приложения и пр.) как общие для ЛВС;
  • предоставляет другим доступ к ним;
  • управляет правами пользователей/узлов сети на использование этих ресурсов;
  • получает доступ к общим ресурсам сети, размещенным на других узлах.

Фактически при такой организации все компьютеры сети остаются независимыми (не считая объединения по проводным или беспроводным каналам связи). Для обращения к ресурсам конкретного узла другим пользователям обязательно пройти авторизацию, с созданной на нем учетной записью.

Такая реализация может быть удобной, пока ЛВС объединят несколько (до 10) узлов. С увеличением их количества:

  • пользователям придется запоминать огромное количество логинов/паролей для локальных учетных записей;
  • обеспечить безопасность становится практически невозможно;
  • существенно усложняется резервное копирование децентрализованной общей информации.

Сеть с выделенным сервером эффективно решает эти и другие проблемы.

В ней:

  • общие ресурсы размещены на отдельном узле – сервере;
  • обмен данными идет не между клиентскими компьютерами, а в паре клиент-сервер;
  • для пользователя/узла создается серверная учетная запись, определяющая права доступа. Соответственно, воспользоваться ими может любой пользователь с каждой клиентской машины после успешной авторизации.

В практике гораздо чаще встречаются варианты совмещения, когда основные задачи решают выделенные серверы, а некоторая часть общих ресурсов распределяется по локальным узлам.

Топология Интернет

Начнем разбор топологии Интернет с «низшего» звена – компьютера пользователя.

Компьютер пользователя, через модем или напрямую, связывается с местным интернет — провайдером. Точка соединения компьютера пользователя с сервером провайдера, называют точкой присутствия или POP — Point of Presence.

В свою очередь, провайдер владеет своей местной сетью, состоящую из линий связи и маршрутизаторов. Пакеты данных получаемые провайдером передаются либо на хост провайдера, либо оператору сетевой магистрали.

В свою очередь, операторы магистралей владеют своими международными магистральными сетями (высокоскоростными). Эти сети связывают между собой местных провайдеров.

Хостинговые компании и крупные Интернет корпорации устраивают свои серверные фермы (дата центры), которые напрямую подключены к магистралям.

Эти центры обрабатывают десятки тысяч запросов к веб-страницам в секунду. Как правило, дата-центры устраиваются в арендуемых помещениях магистральных  операторов, где и располагаются магистральные маршрутизаторы.

Все магистрали между собой связаны. Точки соединения называют точками входа в сеть или Network Access Point – NAP. Это допускает перекидывать передаваемый пакет информации с магистрали на магистраль.

Специально для WebOnTo.ru

Монтаж домашних локальных компьютерных сетей топологии «шина»

Согласно стандартам, монтаж сетей с топологией «шина» может выполняться в соответствии с одной из следующих технологий. Каждая из них имеет свои важные особенности.

Обратите внимание! В обоих случаях регламентировано обязательное использование коаксиального кабеля. Но для 10BASE-2 применяется тонкий вариант, а для 10BASE-5 — толстый кабель

Монтаж локальных сетей топологии «шина» технологией 10BASE-2 Ethernet

Для одноранговой локальной сети с общей шиной используемые типы кабеля — RG-58 и PK-50. Этот вариант требует при монтаже меньших усилий по сравнению со вторым, но качество работы при этом ниже. Такой способ более выгоден для небольших домашних или офисных сетей. Они менее масштабны, но и стоят гораздо дешевле.

Здесь предусмотрены следующие ограничения:

  • Имеет главный кабель, который может быть разбит на несколько сегментов (не более пяти), соединенных репитерами. Длина каждого из них не может превышать 185 метров.
  • Общая длина главного кабеля, включающая в себя все сегменты, не должна превышать 925 метров.
  • К каждому из отрезков коаксиального кабеля допустимо не более 30 подключений.

Важно! Определено минимальное расстояние между проводами, подсоединяющими соседние компьютеры к шине. Оно составляет 0,5 метра

Монтаж локальных сетей топологии «шина» технологией 10BASE-5 Ethernet

Этот вариант создания сети более дорогой, но у него имеется больше возможностей. Он допускает создание более масштабного соединения, отличается высокими надежностью и качеством работы.

У рассматриваемой технологии меньшие ограничения по сравнению с предыдущим вариантом.

Здесь должны быть соблюдены следующие правила:

  • Количество сегментов может быть не больше пяти.
  • Допустимая длина сегмента составляет 500 метров.
  • Общая длина кабеля может доходить до 2,5 километра.
  • Теперь возросло предельное количество устройств для подключения к каждому сегменту — теперь оно достигает ста устройств.
  • Ближайшие компьютеры не могут подключаться к основному кабелю на расстоянии, меньшем 2,5 метра.

Важно! Для обоих рассматриваемых технологий максимальная пропускная способность составляет 10 Мбит в секунду. Еще одним достоинством варианта 10BASE-5 Ethernet является более высокая механическая прочность

Еще одним достоинством варианта 10BASE-5 Ethernet является более высокая механическая прочность.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Топология компьютерной сети — основные виды

Топология компьютерной сети типа Звезда

В центре топологии «Звезда», находится сервер. Все устройства сети (компьютеры) подключены к серверу. Запросы от устройств направляются на сервер, где и обрабатываются. Выход из строя сервера, «убивает» всю сеть. Выход из строя одного устройства, не влияет на работу сети.

Кольцевая топология компьютерной сети

Кольцевая топология компьютерной сети предполагает замкнутое соединение устройств. Выход одного устройства соединяется с входом следующего. Данные двигаются по кругу. Отличается такая топология ненадобностью сервера, но выход одного устройства сети, «убивает» всю сеть.

Шинная топология сети

Шинная топология сети это параллельное подключение устройств сети к общему кабелю. Выход одного устройства из строя не влияет на работу сети, однако обрыв кабеля (шины)  «вырубает» всю сеть.

Ячеистая топология

Ячеистая топология характерна для крупных сетей. Данную топологию можно охарактеризовать так, «все соединяются со всеми». То есть, каждая рабочая станция соединятся со всеми устройствами сети.

Смешанная топология сети

Принцип работы смешанной топологии понятен из названия. Характерно такая топология, для очень крупных компаний.

Может сложиться впечатление, что понятие топология сети применима только для локальных сетей. Это, конечно же, не так. И как пример, в общем виде разберем топологию глобальной сети сетей – Интернет.

Какой она может быть

Чтобы выбрать наиболее эффективный способ подсоединения компьютеров и оборудования в общую сеть, необходимо учитывать их количество. Если соединятся менее десяти устройств при помощи рассматриваемой топологии, то этот способ будет эффективным.

Обратите внимание! Если устройств в ЛВС будет намного больше, то данное решение — неэффективно. В таком случае сеть организуют на основе серверов

Различия между этими двумя способами состоят в следующем:О

  • В одноранговой сети все компьютеры участвуют на равных порах. Поэтому при наращивании количества информационные каналы перегружаются.
  • Использование выделенных серверов означает, что основные данные и используемые приложения находятся на серверах и предоставляют их для пользования остальным компьютерам. Кроме перечисленного, именно они осуществляют необходимые подключения к внешним устройствам, определяют маршруты следования информационных сообщений, проводят управление всей локальной сетью.

Централизованная система

Представленный тип является наиболее распространенным и популярным.

Обратите внимание! При определенном количестве пользователей внутри сети все подсоединены к основному центру — так называемому серверу. Именно на нем находятся все архивы данных, через него принимается и передается информация между пользователями

Плюсы данного типа:

  • высокая скорость работы сетевого соединения;
  • одна система, отвечающая за безопасность;
  • единая база данных;
  • простота в контроле и управлении подключением.

Как и любая другая, такая система имеет свои минусы:

  • сервер, требующий постоянного контроля и своевременного обслуживания;
  • необходимость в наличии администратора центрального компьютера;
  • высокая стоимость серверного оборудования.

Логическая топология БЛВС

Порты коммутаторов уровня доступа, к которым подключаются точки доступа, помещаются в виртуальные сети точек доступа. Данные подсети предназначены для адресации интерфейсов управления точек доступа. На DHCP-сервер развёрнутом на базе MS Windows Server 2008 для сетей точек доступа создаются пулы адресов из подсетей, указанных в таблице VLAN (Таблица 5).

Помимо IP-адреса, маски подсети и IP-адреса шлюза через опцию DHCP точкам доступа передаются IP-адреса management-интерфейсов контроллеров беспроводной сети. Используя полученную информацию, точки доступа инициируют процесс подключения к контроллеру по протоколу CAPWAP, в ходе которого строят два шифрованных туннеля, один для управления, другой – для передачи данных беспроводных клиентов. После успешной регистрации точек на контроллере, контроллер производит обновление программного обеспечения точек и файлов настроек точек доступа, если в этом есть необходимость.

С целью управления контроллерами БЛВС на них настраивается виртуальный интерфейс управления (management interface) и виртуальный сервисный интерфейс (service interface) для взаимодействия с супервизором коммутатора ядра. Настройки коммутатора ядра для интеграции с контроллерами приведены в подразделе 2.15. Для каждой группы беспроводных пользователей создаются виртуальные интерфейсы dynamic, имеющие ассоциацию с виртуальными подсетями (VLAN) и идентификаторами беспроводных сетей (SSID). Далее для каждого идентификатора беспроводной сети создаются профили безопасности, параметры настроек которых определяются политиками безопасности для каждой группы беспроводных пользователей.

Аналогичная процедура настройки повторяется на втором контроллере.

Подключение беспроводных устройств к нужной БЛВС осуществляется по идентификатору SSID. В зависимости от выбранного SSID к беспроводному клиенту применяются политики безопасности и контроля доступа, соответствующие данной группе. После успешного прохождения аутентификации и авторизации пользователи каждой из групп помещаются в предназначенную для их группы виртуальную сеть (VLAN).

Описание групп беспроводных пользователей и соответствующих им профилей безопасности приведены в подразделе 2.9.

Описание процесса подключения беспроводных клиентов к БЛВС представлено в подразделе 2.12.

Маршрутизация между виртуальными подсетями БЛВС и другими сетями осуществляется на коммутаторе ядра ЛВС, для этого на коммутаторе ядра создаются соответствующие Interface VLAN. IP-адреса Interface VLAN коммутатора ядра выступают в роли шлюзов по умолчанию для своих подсетей. С целью изоляции трафика между разными сегментами БЛВС на Interface VLAN коммутатора ядра настраиваются списки доступа.

Перечень используемых в БЛВС виртуальных подсетей и идентификаторов беспроводных сетей приведен в подразделе 2.10.

IP-адресация устройств БЛВС представлена в подразделе 2.11.

Логическая топология БЛВС представлена в документе ИОС-СС-ИТ-БЛВС «Схема функциональной структуры».

Сравнение с другими топологиями

Кроме рассматриваемой топологии широкое распространение имеют другие: «звезда» и «кольцо».

Обратите внимание! Если сравнивать «шину» с ними, то можно выделить достоинства и недостатки

Достоинства

Выбор данной конфигурации имеет важные плюсы:

  • в данном случае настройка сети делается относительно просто;
  • стоимость проведения работ будет меньшей по сравнению с использованием других топологий;
  • выполнение монтажа является менее сложным, чем в аналогичном случае;
  • необходимо учитывать вероятность выхода одного или нескольких компьютеров из строя — при такой схеме подключения это не нанесет ущерба работе остальной подключенной техники.

Недостатки

Однако такому решению присущи также некоторые недостатки:

  • уязвимость в случае неисправности основной шины, к которой подсоединены компьютеры — при этом выйдет из строя вся структура;
  • при такой архитектуре поиск неисправностей является довольно сложным;
  • важный минус состоит в том, что только один компьютер в каждый момент времени может осуществлять передачу;
  • если необходимо подключить новые компьютеры, то возникают проблемы с проведением масштабирования — придется вносить изменения в ранее существовавший отрезок сети.

Преимущества и недостатки шинной топологии

Ее простота монтажа и низкая стоимость компенсируются наличием более сложного управления.

Обратите внимание! Последнее выражается, в частности, в сложности диагностики и исправления ошибок, изоляции возникших проблем от остальной части локальной сети

Виды ЛВС

На сегодняшний день топология ЛВС делится на два типа — полносвязная и неполносвязная. К первой относятся такие соединения, в которых любое сетевое устройство имеет непосредственную связь с другими. Является редко применяемым, поскольку вызывает сомнения в эффективности. Кроме этого, она очень громоздкая, так как каждое устройство должно работать в паре с большим количеством портов для коммутации и контакта со всеми другими приборами.

Обратите внимание! Что касается неполносвязной, то в этом случае применяются специализированные узлы для обмена информацией между устройствами не прямо, а косвенно. Таких схем бывает несколько

Обратите внимание! Каждая схема соединения имеет свои положительные и негативные стороны

Их важно учесть при выборе топологии

«Шина»

Представляет собой наиболее дешевый и простой способ подключения. В таком случае применяется всего лишь одна линия в виде коаксиального кабеля. Именно он является источником и проводником в обмене информацией между пользователями. Особенностью этого класса является наличие на каждом конце «шины» терминатора, который убирает возможные искажения передачи.

Положительные качества:

  • соединенные приборы имеют одинаковые права;
  • неисправность одного устройства никоим образом не влияет на работу других;
  • минимальное использование провода;
  • простое и доступное масштабирование соединения при работе.

Негативные качества:

  • невысокая надежность соединения из-за проблем с разъемами проводов;
  • один канал делится на всех пользователей, что снижает производительность;
  • проблемы с нахождением поломок в связи с параллельным включением адаптеров;
  • возможность использования в сети небольшого количества приборов.

«Звезда»

Данный вид соединения характеризуется наличием сервера, к которому подключаются все сетевые устройства. Доступ к информации и обмен ею происходит только при помощи центрального сервера.

Обратите внимание! Представленная схема более сложная, чем «шина». Для нее характерно применение различного дополнительного оборудования

Минусы:

  • при поломке или сбое в сервере соединение полностью или частично теряет работоспособность, то есть нормальное функционирование зависит только от одного компьютера;
  • большой расход провода, что повышает затраты.

Плюсы:

  • полное отсутствие сетевых конфликтов при схеме с управлением одним компьютером;
  • неисправность одного из устройств или повреждение кабеля не влияет на работу;
  • максимально упрощенное сетевое оборудование. Это связано с тем, что только один ПК является главным;
  • один из наиболее безопасных методов подключения, обладает свойствами простого контроля за сетью и позволяет максимально ограничить доступ «лишних» участников.

«Кольцо»

Соединение происходит за счет контакта одного рабочего узла с другими двумя: один отвечает за прием информации, а по второму осуществляется передача. Получается схема, в которой все устройства соединены в одно кольцо специальными каналами, применяемые для передачи информации. Выход одного узла соединен со входом другого, то есть информация, переданная из одной точки, попадает на начало кольца.

Обратите внимание! Примечательно, что движение данных проходит всегда в одном направлении. Положительные черты:

Положительные черты:

  • возможность быстрого создания и настройки подобного рода подключения;
  • простое масштабирование. В отличие от «шины», необходимо отключение сети при создании дополнительного узла;
  • практически неограниченное количество пользователей;
  • минимизация конфликтов в сети и высокая устойчивость;
  • при наличии ретрансляции можно увеличивать топологию почти без ограничений.

Негативные качества:

повреждение линии ограничивает работоспособность полной сети.

Ячеистая

Представленный тип является результатом удаления определенных связей из полносвязной топологии локальных сетей. В таком случае имеется возможность создания подключения с большим числом участников. В результате были созданы различные версии и конфигурации распространенных способов подключения, такие как: «решетка», двойное или тройное «кольцо», «дерево», «снежинка», сеть Клоза и др.

Обратите внимание! Представленными конфигурациями ячеистая структура не ограничена, возможны различные другие вариации сетевых соединений, многие из которых даже не имеют наименований

Смешанная

Такой тип получается в результате смешения нескольких схем соединений в одну. Она состоит из различных кластеров, которые в свою очередь могут быть стандартными топологиями.

Виды

Выдуман миллион принципов поделить иерархические структуры цифровых мощностей. Ниже вводится ещё и понятие топологии, позволяющее продолжить ряд. Отсутствует резон приводить полный список неудобоваримых классификацией, утомляющих бессмысленностью читателя. Бытует практика различать следующие виды сетей:

  1. Глобальные (всемирные).
  2. Локальные.
  3. Муниципальные (городские, областные).

Реально встречаются комбинированные варианты. Считаем общепринятую классификацию устаревшей, потерявшей физический смысл. Следует разделять 2 категории:

  • ресурсы, наделённые доменными именами, составляющие интернет;
  • прочие структурные формирования.

Рассмотрим ниже понятие доменного имени, пользуясь концепцией глобальных сетей.

Протяжённость

  • Нательная составлена имплантами и носимыми гаджетами.
  • Персональная объединяет устройства одного владельца.
  • Локальная ограничена пределами офиса, завода. Эксперты единогласно называют пределом протяжённости 10 км.
  • Кампусная охватывает несколько близлежащих зданий.
  • Городская связывает абонентов населённого пункта.
  • Глобальная помогает общаться населению планеты.

Архитектура

  • Серверная. Клиенты пользуются услугами центрального ресурса, заведующего правами.
  • Однораноговая. Типичным примером назовём пользователей торрент-клиентов.
  • Звезда.
  • Кольцо.
  • Шина.
  • Ячейки.
  • Решётка.
  • Двойное кольцо.
  • Дерево.
  • Жирное дерево.
  • Гибрид.
  • Windows.
  • Cisco.
  • UNIX.
  • NetWare.

Настройка локальной сети

Включить устройства, подсоединить кабель или роутер к ним – не единственные действия, необходимые для создания локальной сети

При объединении важно правильно настроить компьютеры

При подключении через кабель

Приведенный ниже алгоритм отстройки необходимо провести на обоих компьютерах, к которым подключен кабель.

Настройка рабочей группы и имени ПК

Это действие позволит задать одинаковые имя для устройств, соединенных кабелем. Для этого необходимо:

  1. Нажать сочетание клавиш Win+R;
  2. 2. В поле для ввода вписать универсальную команду sysdm.cpl (подходит для любой версии Windows);
  3. Нажать кнопку «Изменить»;
  4. Ввести имя для компьютеров рабочей группы (обязательно латиница);
  5. Сохранить.

Такое же имя вводится на втором устройстве.

Настройка IP, шлюзов и масок, DNS

На современных операционных системах Windows 8-10 эта процедура заключается в простой установке галочек в центре управления сетями.

Владельцам ПК с версиями систем старше необходимо пройти алгоритм:

  1. Войти в панель управления на ПК и перейти в раздел управления интернет соединениями;
  2. Кликнуть по свойствам созданного кабелем соединения;
  3. Дважды кликнуть левой кнопкой мыши по протоколу версии 4;
  4. Задать IP адрес, главное, чтобы он был одинаковым на обоих устройствах;
  5. Начало IP192.168. – оставшиеся 6 чисел вводятся по вкусу пользователя.

После этого компьютеры объединятся в единую сеть.

Открытие доступа к файлам, папкам, принтеру

Как уже говорилось выше, на Windows 8-10 процедура расшаривания доступа и настройки сети сводится к выбору параметров в центре подключений. Дополнительно можно установить общие пароли для ПК.

На других версиях Windows:

  1. Кнопка Пуск;
  2. Панель управления;
  3. Параметры папок;
  4. Кликнуть по пункту использования мастера общего доступа;
  5. Сохранить и закрыть;
  6. Перейти в окно «Мой компьютер»;
  7. Найти имя ПК, кликнуть правой кнопкой мыши и нажать «Изменить»;
  8. В настройке нажать галочку напротив соотношения устройства с рабочей группой;
  9. Перейти во вкладку доступа, подтвердить разрешение для устройств.

Доступ к интернету на втором ПК

Если компьютер донор подключен к интернету, второе устройство также можно подключить к сети. Для этого нужно выставить аналогичные настройки соединения, как и на доноре.

При подключении через роутер

В этом случае от пользователя требуется меньше действий по настройке соединений на компьютерах. Wi-Fi подключение менее требовательно к настройкам, устанавливается автоматически.

Проверка связи с компьютерами

Необходимо перезагрузить роутер с помощью кнопки на задней панели. Таким образом настройка самого роутера будет правильной, такой, как ее задали производители. Роутер автоматически присваивает адреса компьютерам, которые находятся в зоне его сети.

Проверить, все ли компьютеры подключены к роутеру по Wi-Fi, можно следующим способом:

  1. Открыть браузер, в адресной строке ввести 192.168.1.1;
  2. Войти во вкладку DHCP;
  3. Найти IP-адрес ПК, который будет подключен к локальной сети;
  4. Запустить командную строку, ввести «ping IP другого ПК»;
  5. Дождаться окончания проверки.

Если между устройствами идет обмен пакетами, локальная сеть находится в рабочем состоянии.

Настройка компьютеров в сети

Как и в случае с объединением в локальную сеть через кабель, необходимо задать название рабочей группы и доступ к файлам, принтерам, папкам на всех подключаемых устройствах.

Разница объединения заключается в том, что пользователю не нужно устанавливать IP-адреса, настройки шлюзов и масок. Роутер проводит эти действия автоматически.

Алгоритм настройки через роутер:

  1. Задать одинаковые имена на компьютерах, необходимо использовать латиницу. Для этого нужно кликнуть по Пуск, на «Моем компьютере» нажать правой кнопкой мыши, пункт «Свойства». Во вкладке «Дополнительно» перейти к имени компьютера и ввести нужное значение.
  2. Создать рабочую группу. Это важный этап, без которого объединения в локальную сеть не получится. Настройка рабочей группы проводится в том же окне, где задается имя.
  3. Перейти в центр управления сетями. Необходимо установить вариант «Домашняя сеть» в настройке локального подключения.

Если в настройках стояла «Общественная сеть», ее следует заменить. После однотипной настройки на всех компьютерах, объединенных роутером, появится локальная закрытая сеть.

Пожаловаться на контент

Г

Гомеоморфизм
Биекция f{\displaystyle f}, такая, что f{\displaystyle f} и f−1{\displaystyle f^{-1}} .
Гомеоморфные пространства
Пространства, между которыми существует .
Гомотопия
Для непрерывного отображения fX→Y{\displaystyle f\colon X\to Y} — непрерывное отображение F,1×X→Y{\displaystyle F\colon \times X\to Y}, такое, что F(,x)=f(x){\displaystyle F(0,\;x)=f(x)} для любого x∈X{\displaystyle x\in X}. Часто используется обозначение ft(x)=F(t,x){\displaystyle f_{t}(x)=F(t,\;x)}, в частности f=f{\displaystyle f_{0}=f}.
Гомотопные отображения
Отображения f,gX→Y{\displaystyle f,\;g\colon X\to Y} называются гомотопными или g∼f{\displaystyle g\sim f} если существует гомотопия ft{\displaystyle f_{t}} такая, что f=f{\displaystyle f_{0}=f} и f1=g{\displaystyle f_{1}=g}.
Гомотопическая эквивалентность топологических пространств
Топологические пространства X{\displaystyle X} и Y{\displaystyle Y} гомотопически эквиваленты, если существует пара непрерывных отображений fX→Y{\displaystyle f\colon X\to Y} и gY→X{\displaystyle g\colon Y\to X} таких, что f∘g∼idY{\displaystyle f\circ g\sim \mathrm {id} _{Y}} и g∘f∼idX{\displaystyle g\circ f\sim \mathrm {id} _{X}}, здесь ∼{\displaystyle \sim } обозначает гомотопическую эквивалентность отображений, то есть, эквивалентность с точностью до . Также говорят, что X{\displaystyle X} и Y{\displaystyle Y} имеют один гомотопический тип.
Гомотопический инвариант
Характеристика пространства, которая сохраняется при . То есть, если два пространства гомотопически эквиваленты, то они имеют ту же характеристику. Например, , фундаментальная группа, эйлерова характеристика являются гомотопическими инвариантами.
Гомотопический тип
Класс , то есть, гомотопически эквивалентные пространства называются пространствами одного гомотопического типа.
Граница
1.  .
2.  То же, что край многообразия.

Сеть ЛВС: всё, что нужно знать

Для построения локальной вычислительной сети дома, в офисе или на большом предприятии, потребуются коммутационные устройства с десятком типов назначений от усиления сигнала до обеспечения безопасности данных внутри ЛВС. Системный администратор занимается её обслуживанием, настройкой, поддержанием работоспособности и расширением при необходимости.

Данные доступны всем пользователям сети

Не нужно бегать с флешками от компьютера к компьютеру, загружать данные в файлообменники в Интернете или «перекидывать» документы через «Вайбер» — все данные доступны компьютерам внутри ЛВС.

Совместная работа удалённо

Управление документами и программными средствами возможно с нескольких компьютеров одновременно с высокой степенью безопасности, надёжным соединением и инструментами коммуникации (обмена сообщениями).

Периферийное оборудование доступно всем

С офисным оборудованием проще работать через ЛВС, когда легко распечатать документы в соседнем помещении или получить изображение со сканера в другом здании.

Совместный и защищённый доступ в Интернет

В ограниченной ЛВС больше возможностей защиты пользовательских данных от внешних ИТ-угроз при общем использовании интернет-ресурсов.

Удалённое администрирование компьютеров

Управление программным обеспечением, сервером и рабочими столами на разных операционных системах (Windows, Linux, Mac) возможно из одной точки при отсутствии потребности в физическом вмешательстве в функционирование оборудования.

Для монтажа, подключения и настройки ЛВС привлекаются квалицированные специалисты. Они способны построить современную и даже автоматизированную ЛВС класса «Интернет Вещей», когда множество устройств одной сети от кондиционера до сервера и от смартфона до датчика дыма управляются системно.

Централизация

Топология « звезда» снижает вероятность сбоя сети за счет подключения всех периферийных узлов (компьютеров и т. Д.) К центральному узлу. Когда физическая звездообразная топология применяется к сети логической шины, такой как Ethernet , этот центральный узел (традиционно концентратор) ретранслирует все передачи, полученные от любого периферийного узла, на все периферийные узлы в сети, иногда включая исходный узел. Таким образом, все периферийные узлы могут связываться со всеми остальными посредством передачи и приема только от центрального узла. Недостаточность из линии передачи ссылки любого периферийного узла к центральному узлу приведет к выделению этого периферийного узла от всех остальных, а остальные периферийные узлы не будут затронуты. Однако недостатком является то, что отказ центрального узла приведет к отказу всех периферийных узлов.

Если центральный узел пассивен , исходный узел должен быть в состоянии выдержать прием эхо-сигнала своей собственной передачи, задержанного на время двусторонней передачи в оба конца (то есть к центральному узлу и от него) плюс любая задержка, сгенерированная в центральный узел. Активная звезда сеть имеет активный центральный узел , который обычно имеет средства для предотвращения эха проблем , связанных с .

Топологии дерева ( так называемый иерархическая топология ) можно рассматривать как совокупность звездных сетей , расположенные в иерархии . Это дерево имеет отдельные периферийные узлы (например, листья), которые необходимы для передачи и приема только от одного другого узла и не обязаны действовать как повторители или регенераторы. В отличие от звездообразной сети, функциональность центрального узла может быть распределенной.

Таким образом, как и в обычной звездообразной сети, отдельные узлы могут быть изолированы от сети из-за одноточечного отказа пути передачи к узлу. Если звено, соединяющее лист, выходит из строя, этот лист изолируется; если соединение с нелистовым узлом не удается, весь участок сети становится изолированным от остальных.

Чтобы уменьшить объем сетевого трафика, который исходит от широковещательной передачи всех сигналов всем узлам, были разработаны более продвинутые центральные узлы, которые могут отслеживать идентификаторы узлов, подключенных к сети. Эти сетевые коммутаторы будут «узнать» расположение сети пути «прослушивание» на каждом порту во время нормальной передачи данных, рассматривая пакеты данных и записи адреса / идентификатор каждого подключенного узла , и какой порт он подключен к в справочной таблице , состоявшейся в памяти. Эта таблица поиска затем позволяет пересылать будущие передачи только по назначению.

Д

Дверное пространство
Пространство, в котором всякое подмножество либо открыто, либо замкнуто.
Двоеточие
Топологическое пространство, состоящее из двух точек; возможны три варианта задания топологии — образует ,  — , топология с открытым множеством одной точки — .
Деформационный ретракт
Подмножество A{\displaystyle A} топологического пространства X{\displaystyle X}, обладающее тем свойством, что существует тождественного отображения пространства idX{\displaystyle \mathrm {id} _{X}}
в некоторое отображение X→A{\displaystyle X\to A}, при которой все точки множества A{\displaystyle A} остаются неподвижными.
Дискретная топология
, в которой любое множество .
Дискретное множество
Множество, каждая точка которого является .
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector