Цпу
Содержание:
- Характеристики процессора
- Троттлинг
- Роль Intel в истории микропроцессорной индустрии
- Кристалл и подложка
- Из чего состоит компьютер
- Выбор процессора
- Из чего состоит процессор?
- Поток инструкций
- Два основных компонента процессора
- Что такое процессор
- Как это все работает?
- Инструкции микропроцессора
- Как процессор обрабатывает данные
- Виды процессоров
- Из чего состоит процессор. Иллюстрация в картинках
- Работа процессора
- Но сначала разберемся с диодом
- Как работают ядра процессора
- Система на чипе
- Системный блок в собранном виде
Характеристики процессора
Тактовая частота процессора на сегодняшний день измеряется в гигагерцах (ГГц), Ранее измерялось в мегагерцах (МГц). 1МГц = 1 миллиону тактов в секунду.
Процессор «общается» с другими устройствами (оперативной памятью) с помощью шин данных, адреса и управления. Разрядность шин всегда кратна 8 (понятно почему, если мы имеем дело с байтами), изменчива в ходе исторического развития компьютерной техники и различна для разных моделей, а также не одинакова для шины данных и адресной шины.
Разрядность шины данных говорит о том, какое количество информации (сколько байт) можно передать за раз (за такт). От разрядности шины адресазависит максимальный объем оперативной памяти, с которым процессор может работать вообще.
На мощность (производительность) процессора влияют не только его тактовая частота и разрядность шины данных, также важное значение имеет объем кэш-памяти
Троттлинг
Дросселирование — это процесс защиты процессора от механических повреждений при перегреве. Из-за этого значительно снижаются частота процессора и мощность компьютера в целом. Явление неприятное и возникает редко, разве что при значительном перегреве центрального процессора. ЦП — очень хрупкий и важный компонент компьютера, который защищает себя в случае сбоя. Например, процессор с 4 ядрами и 8 потоками в случае перегрева из-за высокой нагрузки увеличивает нагрузку на первые два ядра, поскольку они по умолчанию являются основными практически для всех процессоров. Пока остальные ядра охлаждаются, первые два работают на полную мощность, и если нагрузка только увеличивается, они вскоре перегреваются, и дроссель включается, эффективно отключая эти ядра, передавая нагрузку на два других ядра, которые скоро перегреется и частота процессора существенно снизится. Чтобы не попасть в такую ситуацию, необходимо следить за охлаждением процессора. Обязательно очистите компьютер от пыли, в том числе и кулер, охлаждающий процессор. Также необходимо заменить термопасту для лучшей теплопроводности. Компьютер должен находиться на расстоянии не менее 50 см от стены, для беспрепятственной циркуляции воздуха, иначе от перегрева пострадает не только процессор, но и весь компьютер в целом. Чтобы снизить температуру процессора, его растачивают. Это замена печатной платы, которая находится под крышкой процессора, передавая тепло от кристалла к его крышке и кулеру.
Роль Intel в истории микропроцессорной индустрии
Речь идет о модели Intel 4004. Мощным он не был и умел выполнять только действия сложения и вычитания. Одновременно он мог обрабатывать всего четыре бита информации (то есть был 4-битным). Но для своего времени его появление стало значительным событием. Ведь весь процессор поместился в одном чипе. До появления Intel 4004, компьютеры базировались на целом наборе чипов или дискретных компонентов (транзисторов). Микропроцессор 4004 лег в основу одного из первых портативных калькуляторов. Первым микропроцессором для домашних компьютеров стал представленный в 1974 году Intel 8080. Вся вычислительная мощность 8-битного компьютера помещалась в одном чипе. Но по-настоящему большое значение имел анонс процессора Intel 8088. Он появился в 1979 году и с 1981 года стал использоваться в первых массовых персональных компьютерах IBM PC.
Далее процессоры начали развиваться и обрастать мощью. Каждый, кто хоть немного знаком с историей микропроцессорной индустрии, помнит, что на смену 8088 пришли 80286. Затем настал черед 80386, за которым следовали 80486. Потом были несколько поколений «Пентиумов»: Pentium, Pentium II, III и Pentium 4. Все это «интеловские» процессоры, основанные на базовой конструкции 8088. Они обладали обратной совместимостью. Это значит, что Pentium 4 мог обработать любой фрагмент кода для 8088, но делал это со скоростью, возросшей примерно в пять тысяч раз. С тех пор прошло не так много лет, но успели смениться еще несколько поколений микропроцессоров.
С 2004 года Intel начала предлагать многоядерные процессоры. Число используемых в них транзисторов возросло на миллионы. Но даже сейчас процессор подчиняется тем общим правилам, которые были созданы для ранних чипов. В таблице отражена история микропроцессоров Intel до 2004 года (включительно). Мы сделаем некоторые пояснения к тому, что означают отраженные в ней показатели:
- Name (Название). Модель процессора
- Date (Дата). Год, в который процессор был впервые представлен. Многие процессоры представляли многократно, каждый раз, когда повышалась их тактовая частота. Таким образом, очередная модификация чипа могла быть повторно анонсирована даже через несколько лет после появления на рынке первой его версии
- Transistors (Количество транзисторов). Количество транзисторов в чипе. Вы можете видеть, что этот показатель неуклонно увеличивался
- Microns (Ширина в микронах). Один микрон равен одной миллионной доле метра. Величина этого показателя определяется толщиной самого тонкого провода в чипе. Для сравнения, толщина человеческого волоса составляет 100 микрон
- Clock speed (Тактовая частота). Максимальная скорость работы процессора
- Data Width. «Битность» арифметико-логического устройства процессора (АЛУ, ALU). 8-битное АЛУ может слагать, вычитать, умножать и выполнять иные действия над двумя 8-битными числами. 32-битное АЛУ может работать с 32-битными числами. Чтобы сложить два 32-битных числа, восьмибитному АЛУ необходимо выполнить четыре инструкции. 32-битное АЛУ справится с этой задачей за одну инструкцию. Во многих (но не во всех) случаях ширина внешней шины данных совпадает с «битностью» АЛУ. Процессор 8088 обладал 16-битным АЛУ, но 8-битной шиной. Для поздних «Пентиумов» была характерна ситуация, когда шина была уже 64-битной, а АЛУ по-прежнему оставалось 32-битным
- MIPS (Миллионов инструкций в секунду). Позволяет приблизительно оценить производительность процессора. Современные микропроцессоры выполняют настолько много разных задач, что этот показатель потерял свое первоначальное значение и может использоваться, в основном, для сравнения вычислительной мощности нескольких процессоров (как в данной таблице)
Существует непосредственная связь между тактовой частотой, а также количеством транзисторов и числом операций, выполняемых процессором за одну секунду. Например, тактовая частота процессора 8088 достигала 5 МГЦ, а производительность: всего 0,33 миллиона операций в секунду. То есть на выполнение одной инструкции требовалось порядка 15 тактов процессора. В 2004 году процессоры уже могли выполнять по две инструкции за один такт. Это улучшение было обеспечено увеличением количества процессоров в чипе.
Чип также называют интегральной микросхемой (или просто микросхемой). Чаще всего это маленькая и тонкая кремниевая пластинка, в которую «впечатаны» транзисторы. Чип, сторона которого достигает двух с половиной сантиметров, может содержать десятки миллионов транзисторов. Простейшие процессоры могут быть квадратиками со стороной всего в несколько миллиметров. И этого размера достаточно для нескольких тысяч транзисторов.
Кристалл и подложка
Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.
Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.
Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.
Готовый кристалл кремния.
После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.
Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.
Готовые отполированные пластины кремния.
Из чего состоит компьютер
Общая производительность системы и стабильность её работы напрямую зависит от технических характеристик её узлов и их взаимной совместимости. В состав компьютера входят следующие аппаратные части:
Процессор
Центральный процессор (ЦП) – главный вычислительный элемент системы, обладающий сложной внутренней микроструктурой. Он управляет работой всех узлов компьютера, что достигается посредством исполнения программного кода, который автоматически извлекается процессором из памяти. В соответствии с командами этого кода, ЦП выполняет те или иные действия. Основные характеристики – тактовая частота, объём внутренней памяти (кэш) и количество вычислительных элементов (ядер).
Материнская плата
Системная плата (материнская плата) – это основа, объединяющая все составные элементы компьютера в единое целое. От её надёжности и поддерживаемых ею функций зависит общая производительность и стабильность системы. В большинстве современных системных плат имеется встроенный звуковой адаптер. Кроме того, многие модели компьютеров оснащаются интегрированным видеоадаптером, производительности которого достаточно для офисной работы и просмотра видеофильмов. Основные параметры: тип разъёма процессора, тип поддерживаемой памяти и частота системной шины.
Жёсткий диск
Жесткий диск – это энергонезависимое устройство хранения данных. На него записываются данные, которые должны быть сохранены после отключения питания компьютера. Это может быть операционная система, установленные программы, файлы пользователя и др. Характеризуется ёмкостью.
Оперативная память
Оперативная память – это запоминающее устройство, используемое для хранения данных, к которым во время работы компьютера производятся регулярные обращения процессора или других устройств. При отключении питания вся информация из этой памяти стирается. Характеризуется ёмкостью и рабочей частотой.
Графический адаптер
Графический адаптер – это модуль, обеспечивающий преобразование видеоданных, хранящихся в памяти компьютера, в форму, удобную для отображения на экране видеомонитора.
Видеокарта
Видеоадаптер – является сложным устройством, обладающим собственным процессором и памятью. Работая параллельно с ЦП, графический адаптер полностью берёт на себя задачу преобразования и отображения видео, что освобождает вычислительные ресурсы центрального процессора для других задач. Основные параметры: частота графического процессора, объём и скорость видеопамяти.
Звуковая карта
Звуковой адаптер – осуществляет преобразование аудиоданных, получаемых из памяти компьютера, в форму, пригодную для вывода на усилитель аудиосистемы.
Блок питания
Блок питания – является источником электропитания для всех внутренних узлов компьютера. Характеризуется мощностью.
Ввод-вывод
Устройства ввода-вывода – обеспечивают обмен данными между компьютером и внешним миром. К устройствам ввода-вывода относятся клавиатура, мышь, сканер, видеомонитор, аудиосистема, принтер и многие другие устройства, подключаемые к внешним разъёмам компьютера.
Выбор процессора
Теперь, когда мы узнали все основы и четко понимаем, что такое тактовая частота и техпроцесс или почему количество ядер не стоит путать с количеством потоков, нам осталось выбрать подходящий центральный процессора для нашего компьютера.
К сожалению, здесь тоже всё не так просто.
Вот небольшой пример — если Intel Core i3-8100 будет идеальным решением для офиса (работа в Microsoft Office, 1С, почтовыми программами и т. д.), то он едва ли сможет обеспечить стабильный FPS в современных и требовательных играх.
Как не запутаться в таком обилии и разнообразии различных центральных процессоров и выбрать подходящий процессор именно вам? В этом сложном вопросе вам поможет наша статья «Как выбрать процессор для компьютера? Какой процессор лучше: AMD или Intel?», в которой мы постарались доходчиво разобрать все основные моменты, связанные с выбором центрального процессора.
Из чего состоит процессор?
Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.
Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.
Поток инструкций
Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.
Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.
Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.
Если хотите узнать о процессорах больше, посмотрите, какие бывают популярные архитектуры: CISC, RISC, MISC и другие и виды.
Перевод статьи «How does a CPU work?»
Два основных компонента процессора
Устройство управления
Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент — арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.
Существует два типа реализации УУ:
- УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением — устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
- УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.
УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.
Арифметико-логическое устройство
Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.
Хакатон «Энергия Прорыва»
9–10 октября, Москва и онлайн, Беcплатно
tproger.ru
События и курсы на tproger.ru
Большинство логических элементов имеют два входа и один выход.
Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S — выходом, C — переносом (в старший разряд).
Схема арифметического полусумматора
Что такое процессор
Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.
Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.
Как это все работает?
Логика работы любого процессора строится на том, что все данные компьютера хранятся в битах, специальных ячейках информации, представленных 0 или 1. Попробуем разобраться, что происходит, как из этих нулей и единиц на экран перед нами предстают красочные фильмы и захватывающие компьютерные игры?
Прежде всего, необходимо уяснить, что имея дело с электроникой, мы получаем любую информацию в виде напряжения. Выше определенного значения мы получаем единицу, ниже – ноль. К примеру, включенный в комнате свет — это единица, выключенный – ноль. Дальнейшая иерархия, благодаря которой получаются более сложные элементы – это байт, состоящий из восьми битов. Благодаря этим самым байтам речь может идти не только о включенном или выключенном свете в помещении, но и о его яркости, оттенке цвета и так далее.
Напряжение проходит через память и передает данные процессору, который использует, в первую очередь, собственную кэш-память как наиболее оперативную, однако, небольшую ячейку. Через специальный блок управления данные обрабатываются и распределяются по дальнейшему пути.
Процессор использует байты и целые последовательности из них, что, в свою очередь, называется программой. Именно программы, обрабатываемые процессором, заставляют компьютер выполнить то или иное действие: воспроизвести видео, запустить игру, включить музыку и так далее.
Инструкции микропроцессора
Приведем список слов-команд языка ассемблера для условного простого процессора, который мы рассматриваем в качестве примера к нашему повествованию:
- LOADA mem — Загрузить (load) регистр A из некоторого адреса памяти
- LOADB mem — Загрузить (load) регистр B из некоторого адреса памяти
- CONB con — Загрузить постоянное значение (constant value) в регистр B
- SAVEB mem — Сохранить (save) значение регистра B в памяти по определенному адресу
- SAVEC mem — Сохранить (save) значение регистра C в памяти по определенному адресу
- ADD — Сложить (add) значения регистров A и B. Результат действия сохранить в регистре C
- SUB — Вычесть (subtract) значение регистра B из значения регистра A. Результат действия сохранить в регистре C
- MUL — Перемножить (multiply) значения регистров A и B. Результат действия сохранить в регистре C
- DIV — Разделить (divide) значение регистра A на значение регистра B. Результат действия сохранить в регистре C
- COM — Сравнить (compare) значения регистров A и B. Результат передать в тестовый регистр
- JUMP addr — Перепрыгнуть (jump) к указанному адресу
- JEQ addr — Если выполняется условие равенства значений двух регистров, перепрыгнуть (jump) к указанному адресу
- JNEQ addr — Если условие равенства значений двух регистров не выполняется, перепрыгнуть (jump) к указанному адресу
- JG addr — Если значение больше, перепрыгнуть (jump) к указанному адресу
- JGE addr — Если значение больше или равно, перепрыгнуть (jump) к указанному адресу
- JL addr — Если значение меньше, перепрыгнуть (jump) к указанному адресу
- JLE addr — Если значение меньше или равно, перепрыгнуть (jump) к указанному адресу
- STOP — Остановить (stop) выполнение
Английские слова, обозначающие выполняемые действия, в скобках приведены неспроста. Так мы можем видеть, что язык ассемблера (как и многие другие языки программирования) основан на английском языке, то есть на привычном средстве общения тех людей, которые создавали цифровые технологии.
Как процессор обрабатывает данные
Приведенное краткое описание работы процессора компьютера иллюстрирует, что обработка данных процессором представляет из себя последовательность очень «мелких» шагов:
- считывание данных из оперативной памяти в регистры процессора,
- обработка этих данных и
- обратная запись данных из регистров процессора в ячейки оперативной памяти.
Но компенсацией за это является высочайшая скорость вычислений, сотни тысяч и миллионы таких «маленьких» операций ежесекундно. И соответственно, обеспечивается высокая скорость обработки информации, которая делает компьютер незаменимым помощником для работы, учебы, отдыха, развлечений.
Статья закончилась, можно еще прочитать:
1. О работе процессора компьютера
2. Первый процессор Intel: история появления от идеи до воплощения
3. Устройство системного блока
4. Постоянная и оперативная память компьютеров и мобильных телефонов
5. От чайника к юзеру: шаг вперед, два шага назад
Распечатать статью
Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик. Уже более 3.000 подписчиков
.
Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам
Виды процессоров
В этой главе мы рассмотрим вопрос, какие бывают процессоры, имеется в виду производители и в чем различие между ними.
Есть две компании, которые в настоящее время доминируют на рынке с точки зрения скорости и качества процессора. Этими компаниями являются INTEL и Advanced Micro Devices (AMD).
Обе компании конкурируют друг с другом, и их продукты очень близки друг к другу. Компьютеры Intel в основном используются фирмами производителями Dell и HP.
Процессоры Intel
Intel является мировым технологическим лидером, пользующимся звездной репутацией за абсолютную высочайшую производительность среди коммерческих процессорных технологий.
Обладая широчайшим ассортиментом cpu на рынке коммерческой, оборонной, медицинской, транспортной и промышленной автоматики, продукция этой фирмы обеспечивают высочайшую производительность, улучшенную встроенную поддержку графики и носителей, а также встроенные функции безопасности.
Технология Intel Tick-Tock, которая чередует усовершенствования микро архитектуры с энергосберегающим сжатием геометрии матрицы, обеспечивает непрерывное улучшение производительности.
Это происходит, благодаря надежным, масштабируемым вариантам обработки, доступным поставщикам одноплатных пк (SBC) и процессоров DSP для использования во встроенном управлении, обработке и обработке и вычислительные приложения. Высокая производительность:
- обработка вектора AVX / AVX2, инструкции потоковой передачи SSE;
- встроенная графика с несколькими дисплеями;
- openGL доступны для вычислительных приложений.
В качестве примера представляю один из продуктов этой известной компании. Удвоение скорости одного cpu и объединение двух ядер – это не одно и то же с аналогичным одноядерным, если он способен обеспечить многозадачность и поддерживает многопоточность. Некоторые из основных характеристик:
- Двухъядерный cpu обеспечивает повышение производительности на 25–75%.
- Обеспечить отличную производительность рабочего стола.
- Многозадачность для повседневных вычислений.
- Улучшения низкой мощности.
Процессоры AMD
Основанная в 1969 году в качестве стартапа в Силиконовой долине, компания AMD началась с десятков сотрудников, сосредоточенных на передовых полупроводниковых продуктах.
Из этих скромных начинаний компания превратилась в глобальную структуру из 10 000 человек, достигнув многих важных отраслевых достижений. Сегодня она разрабатывает высокопроизводительные вычислительные и визуализационные продукты для решения самых сложных и интересных задач в мире.
Она сильно отстала в гонке за последние десять лет, но все изменилось в 2017 году с появлением цп Ryzen. Производительность на одно ядро увеличилась примерно на 50 процентов по сравнению с предыдущими частями AMD FX-серии.
Возможно, что еще более важно, когда ее конкурент в то время выдвигал 4/8-ядерные cpu в качестве своих самых быстрых решений для массового рынка, AMD удвоила свою долю и выпустила 8-/16-ядерные потоковые компоненты.. Сегодня эта компания продвигает 16-/32-ядерный поточный цп
Сегодня эта компания продвигает 16-/32-ядерный поточный цп.
В последние годы она выпустила первые процессоры Ryzen 3000. Это впечатляющая линейка, которая идет в ногу с самыми быстрыми предложениями Intel, и хотя она немного отстает в игровой производительности в сочетании с видеокартами высшего уровня.
Из чего состоит процессор. Иллюстрация в картинках
Здравствуйте, дорогие читатели. Сегодня мы Вам покажем, из чего состоит процессор изнутри. Многие пользователи, конечно, имели опыт с установкой процессора на материнскую плату, но не многие знают о том, как он выглядит изнутри. Мы постараемся объяснить Вам на достаточно простом языке, что бы было понятно, но в то же время не опуская подробностей. Прежде, чем начать рассказывать о составных частях процессора, Вы можете ознакомится с очень любопытным российским прототипом Эльбрус здесь.
Многие пользователи считают, что процессор выглядит именно так, как показано на рисунке.
Однако это вся конструкция в сборе, которая состоит из более мелких и жизненно важных частей. Давайте посмотрим, из чего состоит процессор изнутри. В состав процессора входит:
На рисунке выше под номером 1 изображена защитная крышка, которая обеспечивает механическую защиту от попадания пыли и других мелких частиц. Крышка изготовлена из материала, который имеет высокий коэффициент теплопроводности, что позволяет забирать лишнее тепло с кристалла, тем самым обеспечивая нормальный температурный диапазон работы процессора.
Под номером 2 изображен «мозг» процессор и компьютера в целом — это кристалл. Именно он считается самым «умным» элементом процессора, который выполняет все возложенные на него задачи. Вы можете увидеть ,что на кристалл нанесена тонким слоем микросхема, которая обеспечивает заданное функционирование процессора. Наиболее часто кристаллы процессора делают из кремния: это обуславливается тем, что этот элемент имеет достаточно сложные молекулярные связи, которые используются при формировании внутренних токов, что обеспечивает созданию многопоточной обработки информации.
Под номером 3 показана текстолитовая платформа, к которой крепятся все остальные делали: кристалл и крышка. Эта платформа так же играет роль хорошего проводника, который обеспечивает хороший электрический контакт с кристаллом. На обратной стороне платформы с целью повышения электропроводности находится много точек, изготовленных из драгоценного метала (иногда используют даже золото).
Вот как выглядят электопроводящие точки на примере процессора Intel.
Форма контактов зависит от того, какой сокет стоит на материнской плате. Бывет и так, что вмето точек на обратной стороне платформы Вы можете увидеть штырьки, которые выполняют ту же роль. Как правило, для процессоров семейства Intel штырьки находятся в самой материнской плате. В этом случае на подложке (она же платформа) будут располагаться точки. Для семейства процессоров AMD штырьки находяться непосредственно на самой подложке. Выглядят такие процессоры следующим образом.
Теперь рассмотрим сам способ крепления всех деталей. Для того, что бы крышка прочно удерживалась на подложке, ее «садят» при помощи специального клея-герметика, который устойчивый у большим температурам. Это позволяет конструкции находится в постоянной связке, не нарушая ее целостности.
Для того, что бы кристалл не перегревался, на него наносят специальную прокладку 1, поверх которой, в свою очередь, наносится термопаста 2, обеспечивающая эффективный теплоотвод на крышку. Крышка так же «смазывается» с внутренней стороны термопастой.
Давайте теперь посмотрим, как выглядит двухъядерный процессор. Ядро представляет собой отдельный функционально независимый кристалл, который параллельно устанавливается на подложку. Выглядит это так.
Таким образом 2 установленных рядом ядра увеличивают сумарную мощность процессора. Однако, если Вы увидите 2 кристалла, стоящих рядом, это не всегда будет означать, что у Вас двухъядерный процессор. На некоторых сокетах устанавливаются 2 кристалла, один из которых отвечает за арифметико-логическую часть, а другой — за обработку графики (некий встроенный графический процессор). Это выручает в тех случаях, когда у Вас встроенная видеокарта, мощности которой не хватает справится, например, с какой-нибудь игрой. В тих случаях львиную долю вычислений берет на себя графическая часть центрального процессора. Вот так выглядит процессор с графическим ядром.
Вам будет интересно:
Работа процессора
Работает процессор под управлением программы, находящейся в оперативной памяти.
(Работа процессора сложнее, чем это изображено на схеме выше. Например, данные и команды попадают в кэш не сразу из оперативной памяти, а через блок предварительной выборки, который не изображен на схеме. Также не изображен декодирующий блок, осуществляющий преобразование данных и команд в двоичную форму, только после чего с ними может работать процессор.)
Блок управления помимо прочего отвечает за вызов очередной команды и определение ее типа.
Арифметико-логическое устройство, получив данные и команду, выполняет указанную операцию и записывает результат в один из свободных регистров.
Текущая команда находится в специально для нее отведенном регистре команд. В процессе работы с текущей командой увеличивается значение так называемого счетчика команд, который теперь указывает на следующую команду (если, конечно, не было команды перехода или останова).
Часто команду представляют как структуру, состоящую из записи операции (которую требуется выполнить) и адресов ячеек исходных данных и результата. По адресам указанным в команде берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала оказывается в регистре, а уж потом перемещается по своему адресу, указанному в команде.
Но сначала разберемся с диодом
Вдыхаем!
Кремний (он же Si – «silicium» в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.
Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.
У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.
Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.
Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.
При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.
Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.
Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.
Если к диоду подключить источник питания таким образом, чтобы «–» касался p-стороны пластины, а «+» – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.
Но если подключить питание с достаточным напряжением наоборот, т.е. «+» от источника к p-стороне, а «–» – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.
Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.
Как работают ядра процессора
В старые времена вычислительной техники компьютерный процессор имел бы одно ядро. Это означает, что он мог одновременно выполнять только один набор инструкций. Аппаратные инженеры раздвинули этот предел, и сегодня многоядерные процессоры стали стандартом. Многоядерные процессоры имеют несколько ядер, поэтому они могут выполнять разные инструкции одновременно.
Большинство компьютеров сегодня имеют от двух до четырёх ядер. Вы часто слышите, что эти настройки называются «двухъядерными» и «четырехъядерными» соответственно. Некоторые процессоры имеют до 12 ядер, в зависимости от их назначения. Чем больше ядер у ЦП, тем больше инструкций может интерпретировать процессор.
Многоядерные процессоры — это просто два или более процессора на одном кристалле. Четырехъядерный процессор — это четыре процессора, всё на одном кристалле. Затем они связываются, чтобы они могли работать вместе.
Система на чипе
Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.
В какой-то момент на маленьком чипе площадью около 1 см2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.
Системный блок в собранном виде
В собранном виде системный блок будет выглядеть примерно как-то так.
В правом верхнем углу мы видим блок питания. Видим как от него ответвляются кабели к дисководам, к жестким дискам, к материнской плате и кулерам. Как раз то, о чем я вам писал.
В левом нижнем углу видим три жестких диска, а над ними корзину с дисководами. В центре самую большую материнскую плату. На ней внушительных размеров кулер, расположенный над процессором и под всем этим делом какую-то видеокарту.
Вот вообщем-то и все, о чем я сегодня хотел вам поведать. Надеюсь, что внутреннее устройство системного блока более не является для вас загадкой. В любом случае эта информация вам еще пригодится, когда мы с вами в следующих статьях научимся выбирать комплектующие под бюджет и собирать системный блок компьютера самостоятельно.